An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems

M. Baumann^{*,†} and M.B. Van Gijzen[†]

*Email: M.M.Baumann@tudelft.nl [†]Delft Institute of Applied Mathematics Delft University of Technology Delft, The Netherlands

January 31, 2017

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

</₽> < E> < E>

Motivation (1/3)

Seismic exploration:

- elastic wave equation
- in frequency-domain
- 'only' forward problem

Solve

$$(K + i\omega_k C - \omega_k^2 M)\mathbf{x}_k = \mathbf{b}$$

for multiple frequencies ω_k .

TUDelft

Motivation (1/3)

Seismic exploration:

- elastic wave equation
- in frequency-domain
- 'only' forward problem

Solve

$$(K + i\omega_k C - \omega_k^2 M)\mathbf{x}_k = \mathbf{b}$$

for multiple frequencies ω_k .

$$K \succeq 0, \quad C \succeq 0, \quad M \succ 0$$

TUDelft

Motivation (2/3)

...
$$(K + i\omega_k C - \omega_k^2 M)\mathbf{x}_k = \mathbf{b}$$

< □ > < □ > < □ > < □ > < □ >

Linearization:

$$\left(\begin{bmatrix} iC & K\\ I & 0 \end{bmatrix} - \omega_k \begin{bmatrix} M & 0\\ 0 & I \end{bmatrix}\right) \begin{bmatrix} \omega_k \mathbf{x}_k\\ \mathbf{x}_k \end{bmatrix} = \begin{bmatrix} \mathbf{b}\\ \mathbf{0} \end{bmatrix}, \quad k = 1, ..., N_{\omega}$$

Single preconditioner:

$$P(\tau)^{-1} = \left(\begin{bmatrix} iC & K \\ I & 0 \end{bmatrix} - \tau \begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix} \right)^{-1}$$
$$= \begin{bmatrix} I & \tau I \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & (K + i\tau C - \tau^2 M)^{-1} \end{bmatrix} \begin{bmatrix} 0 & I \\ I & -iC + \tau M \end{bmatrix}$$

Motivation (2/3)

...
$$(K + i\omega_k C - \omega_k^2 M)\mathbf{x}_k = \mathbf{b}$$

(日) (同) (三) (三)

Linearization:

$$\left(\begin{bmatrix} iC & K\\ I & 0 \end{bmatrix} - \omega_k \begin{bmatrix} M & 0\\ 0 & I \end{bmatrix}\right) \begin{bmatrix} \omega_k \mathbf{x}_k\\ \mathbf{x}_k \end{bmatrix} = \begin{bmatrix} \mathbf{b}\\ \mathbf{0} \end{bmatrix}, \quad k = 1, ..., N_{\omega}$$

Single preconditioner:

$$\mathcal{P}(\tau)^{-1} = \left(\begin{bmatrix} iC & K \\ I & 0 \end{bmatrix} - \tau \begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix} \right)^{-1} \\ = \begin{bmatrix} I & \tau I \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & (K + i\tau C - \tau^2 M)^{-1} \end{bmatrix} \begin{bmatrix} 0 & I \\ I & -iC + \tau M \end{bmatrix}$$

Motivation (3/3)

Convergence behavior for two different τ .

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

(a)

Motivation (3/3)

Convergence behavior for two different τ .

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

(日) (同) (三) (三)

Outlook

1 The shift-and-invert preconditioner for GMRES

2 Optimization of seed frequency

3 Shifted Neumann preconditioners

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

< □ ▶

· • @ • • Ξ • • Ξ •

Shift-and-invert preconditioner for GMRES

$$\mathcal{A} := \begin{bmatrix} iC & K \\ I & 0 \end{bmatrix}, \quad \mathcal{B} := \begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix}$$

Want to solve

$$(\mathcal{A} - \omega_k \mathcal{B})\mathbf{x}_k = \mathbf{b}, \quad k = 1, ..., N_{\omega},$$

with a single preconditioner $\mathcal{P}(\tau) = (\mathcal{A} - \tau \mathcal{B})$:

$$(\mathcal{A} - \omega_k \mathcal{B}) \mathcal{P}_k^{-1} \mathbf{y}_k = \mathbf{b} \quad \Leftrightarrow \quad (\mathcal{A} (\mathcal{A} - \tau \mathcal{B})^{-1} - \eta_k I) \mathbf{y}_k = \mathbf{b}$$

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

Shift-and-invert preconditioner for GMRES

$$\mathcal{A} := \begin{bmatrix} iC & K \\ I & 0 \end{bmatrix}, \quad \mathcal{B} := \begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix}$$

· • @ • • = • • = •

Want to solve

$$(\mathcal{A} - \omega_k \mathcal{B})\mathbf{x}_k = \mathbf{b}, \quad k = 1, ..., N_{\omega},$$

with a single preconditioner $\mathcal{P}(\tau) = (\mathcal{A} - \tau \mathcal{B})$:

$$(\mathcal{A} - \omega_k \mathcal{B}) \mathcal{P}_k^{-1} \mathbf{y}_k = \mathbf{b} \quad \Leftrightarrow \quad (\mathcal{A} (\mathcal{A} - \tau \mathcal{B})^{-1} - \eta_k I) \mathbf{y}_k = \mathbf{b}$$

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

Shift-and-invert preconditioner for GMRES

$$\mathcal{A} := \begin{bmatrix} iC & K \\ I & 0 \end{bmatrix}, \quad \mathcal{B} := \begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix}$$

Want to solve

$$(\mathcal{A} - \omega_k \mathcal{B})\mathbf{x}_k = \mathbf{b}, \quad k = 1, ..., N_\omega,$$

with a single preconditioner $\mathcal{P}(\tau) = (\mathcal{A} - \tau \mathcal{B})$:

$$(\mathcal{A} - \omega_k \mathcal{B}) \mathcal{P}_k^{-1} \mathbf{y}_k = \mathbf{b} \quad \Leftrightarrow \quad (\mathcal{C} - \eta_k I) \mathbf{y}_k = \mathbf{b}$$

• $\mathcal{C} := \mathcal{A} (\mathcal{A} - \tau \mathcal{B})^{-1}$
• $\eta_k := \omega_k / (\omega_k - \tau)$

M. Baumann @ TU Berlin

TUDelft

An optimal shift-and-invert preconditioner

Multi-shift GMRES... Did you know?

For shifted problems,

$$(\mathcal{C} - \eta_k I)\mathbf{y}_k = \mathbf{b}, \quad k = 1, ..., n_s,$$

Krylov spaces are shift-invariant

$$\mathcal{K}_m(\mathcal{C},\mathbf{b}) \equiv \mathcal{K}_m(\mathcal{C}-\eta I,\mathbf{b}) \quad \forall \eta \in \mathbb{C}.$$

Multi-shift GMRES:

$$(\mathcal{C} - \eta_k I) V_m = V_{m+1}(\underline{H}_m - \eta_k \underline{I})$$

Reference

A. Frommer and U. Glässner. *Restarted GMRES for Shifted Linear Systems*. SIAM J. Sci. Comput., **19**(1), 15–26 (1998)

Multi-shift GMRES... Did you know?

For shifted problems,

$$(\mathcal{C} - \eta_k I)\mathbf{y}_k = \mathbf{b}, \quad k = 1, ..., n_s,$$

Krylov spaces are shift-invariant

$$\mathcal{K}_m(\mathcal{C},\mathbf{b}) \equiv \mathcal{K}_m(\mathcal{C}-\eta I,\mathbf{b}) \quad \forall \eta \in \mathbb{C}.$$

Multi-shift GMRES:

$$(\mathcal{C} - \eta_k I) V_m = V_{m+1}(\underline{H}_m - \eta_k \underline{I})$$

Reference

A. Frommer and U. Glässner. *Restarted GMRES for Shifted Linear Systems*. SIAM J. Sci. Comput., **19**(1), 15–26 (1998)

TUDelft

Optimization of seed frequency

$$\left(\mathcal{A}(\mathcal{A}- au\mathcal{B})^{-1}-rac{\omega_k}{\omega_k- au}I
ight)\mathbf{y}_k=\mathbf{b}$$

Theorem: GMRES convergence bound [Saad, Iter. Methods] Let the eigenvalues of a matrix be enclosed by a circle with radius *R* and center *c*. Then the GMRES-residual norm after *i* iterations $\|\mathbf{r}^{(i)}\|$ satisfies,

$$rac{\|\mathbf{r}^{(i)}\|}{\|\mathbf{r}^{(0)}\|} \leq c_2(X) \left(rac{R(au)}{|c(au)|}
ight)^i,$$

where X is the matrix of eigenvectors, and $c_2(X)$ its condition number in the 2-norm.

TUDelft

Optimization of seed frequency

$$\left(\mathcal{A}(\mathcal{A}- au\mathcal{B})^{-1}-rac{\omega_k}{\omega_k- au}I
ight)\mathbf{y}_k=\mathbf{b}$$

Theorem: msGMRES convergence bound [Saad, Iter. Methods] Let the eigenvalues of a matrix be enclosed by a circle with radius R_k and center c_k . Then the GMRES-residual norm after *i* iterations $\|\mathbf{r}_k^{(i)}\|$ satisfies,

$$\frac{\|\mathbf{r}_{k}^{(i)}\|}{\|\mathbf{r}^{(0)}\|} \leq c_{2}(X) \left(\frac{R_{k}(\tau)}{|c_{k}(\tau)|}\right)^{i}, \quad k = 1, ..., n_{s},$$

where X is the matrix of eigenvectors, and $c_2(X)$ its condition number in the 2-norm.

ruDelft

The preconditioned spectra - no damping

ÉUDelft M. Baumann © TU Berlin

- ▲ 🗇 🕨

The preconditioned spectra - no damping

ÉUDelft M. Baumann © TU Berlin

An optimal shift-and-invert preconditioner

- 4 🗇 ▶

The preconditioned spectra – with damping $\epsilon > 0$ $\hat{\omega}_k := (1 - \epsilon i)\omega_k$

The preconditioned spectra – with damping $\epsilon > 0$ $\hat{\omega}_k := (1 - \epsilon i)\omega_k$

TUDelft

10 / 28

The preconditioned spectra

Lemma: Optimal seed shift for msGMRES [B/vG, 2016] (i) For $\lambda \in \Lambda[\mathcal{AB}^{-1}]$ it holds $\Im(\lambda) \geq 0$. (ii) The preconditioned spectra are enclosed by circles of radii R_k and center points c_k . (iii) The points $\{c_k\}_{k=1}^{N_{\omega}} \subset \mathbb{C}$ described in statement (ii) lie on a circle with center c and radius R. (iv) Consider the preconditioner $\mathcal{P}(\tau^*) = \mathcal{A} - \tau^* \mathcal{B}$. An optimal seed frequency τ^* for preconditioned multi-shift GMRES is given by, $\tau^*(\epsilon) = \min_{\tau \in \mathbb{C}} \max_{k=1, n_c} \left(\frac{R_k(\tau)}{|c_k|} \right) = \dots =$ $=\frac{2\omega_1\omega_{n_s}}{\omega_1+\omega_{n_s}}-i\frac{\sqrt{[\epsilon^2(\omega_1+\omega_{n_s})^2+(\omega_{n_s}-\omega_1)^2]\omega_1\omega_{n_s}}}{\omega_1+\omega_{n_s}}$

M. Baumann @ TU Berlin

, UDelft

</₽> < 3> < 3

The preconditioned spectra – Proof (1/4)

Proof. (i) We have to show $\Im(\omega) \ge 0$ for,

$$\begin{bmatrix} iC & K \\ I & 0 \end{bmatrix} x = \omega \begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix} x$$

or, alternatively ($\lambda = i\omega$),

$$(K + \lambda C + \lambda^2 M)v = 0$$

§3.8		come in pairs (λ, λ)	λ then x is a left eigenvector of $\overline{\lambda}$
P5	M Hermitian positive	$\operatorname{Re}(\lambda) \leq 0$	
§3.8	definite, C, K Hermitian		
	positive semidefinite		
P6	M, C symmetric positive	λ s are real and negative,	<i>n</i> linearly independent
§3.9	definite, K symmetric	gap between n largest and	eigenvectors associated with

$$\Re(\lambda) \leq 0 \; \Rightarrow \; \Im(\omega) \geq 0$$

M. Baumann @ TU Berlin

The preconditioned spectra – Proof (1/4)

Proof. (i) We have to show $\Im(\omega) \ge 0$ for,

$$\begin{bmatrix} iC & K \\ I & 0 \end{bmatrix} x = \omega \begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix} x$$

or, alternatively ($\lambda = i\omega$),

$$(K + \lambda C + \lambda^2 M)v = 0$$

§3.8		come in pairs (λ, λ)	λ then x is a left eigenvector of $\overline{\lambda}$
P5	M Hermitian positive	$\operatorname{Re}(\lambda) \leq 0$	
§3.8	definite, C, K Hermitian		
	positive semidefinite		
P6	M, C symmetric positive	λ s are real and negative,	<i>n</i> linearly independent
§3.9	definite, K symmetric	gap between n largest and	eigenvectors associated with

$$\Re(\lambda) \leq 0 \Rightarrow \Im(\omega) \geq 0$$

The preconditioned spectra – Proof (2/4)

(ii) The preconditioned spectra are enclosed by circles.

Factor out \mathcal{AB}^{-1} ,

$$\mathcal{C} - \eta_k I = \mathcal{A}(\mathcal{A} - \tau \mathcal{B})^{-1} - \eta_k I = \mathcal{A}\mathcal{B}^{-1}(\mathcal{A}\mathcal{B}^{-1} - \tau I)^{-1} - \eta_k I,$$

and note that

$$\mathbf{\Lambda}[\mathcal{A}\mathcal{B}^{-1}] \ni \lambda \mapsto \frac{\lambda}{\lambda - \tau} - \frac{\omega_k}{\omega_k - \tau},$$

is a Möbius transformation^(*).

Reference

M.B. van Gijzen, Y.A. Erlangga, C. Vuik. *Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian.* SIAM J. Sci. Comput., **29**(5), 1942–1958 (2007)

The preconditioned spectra – Proof (3/4)

- (iii) Spectra are bounded by circles (c_k, R) . These center point $\{c_k\}_{k=1}^{n_s}$ lie on a 'big circle' $(\underline{c}, \underline{R})$.
- 1. Construct center:

$$\underline{\mathsf{c}} = \left(0, \frac{\epsilon |\tau|^2}{2\Im(\tau)(\Im(\tau) + \epsilon \Re(\tau))}\right) \in \mathbb{C}$$

2. A point c_k has constant distance to \underline{c} :

$$\underline{\mathbf{R}}^2 = \|\mathbf{c}_k - \underline{\mathbf{c}}\|_2^2 = \frac{|\tau|^2(\epsilon^2 + 1)}{4(\Im(\tau) + \epsilon \Re(\tau))^2} \quad (\text{independent of } \omega_k)$$

M. Baumann @ TU Berlin

The preconditioned spectra – with damping $\epsilon > 0$ $\hat{\omega}_k := (1 - \epsilon i)\omega_k$

4⊂Delft

15 / 28

The preconditioned spectra – Proof (4/4)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

16 / 28

The preconditioned spectra – Proof (4/4)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

6 / 28

The preconditioned spectra – Proof (4/4)

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

16 / 28

Optimization of seed frequency

3 Shifted Neumann preconditioners

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

(a)

Second level: shifted polynomial preconditioners (1/2)

Polynomical preconditioners preserve shift-invariance:

$$(\mathcal{C} - \eta_k I) p_{n,k}(\mathcal{C}) = \mathcal{C} p_n(\mathcal{C}) - \tilde{\eta}_k I$$

•
$$C^{-1} \approx p_n(C) = \sum_{k=0}^n (I - \xi^* C)^k =: \sum_{i=0}^n \gamma_i C^i$$

• $p_{n,k}(C) = \sum_{i=0}^n \gamma_{i,k} C^i$ optimal: $\xi^* = \frac{1}{c_0(\tau^*)}$

Reference

M.I. Ahmad, D.B. Szyld, M.B. van Gijzen. *Preconditioned multishift BiCG* for \mathcal{H}_2 -optimal model reduction. Tech. report 12-06-15, Temple U (2013)

Second level: shifted polynomial preconditioners (2/2)

Substitution into,

$$(\mathcal{C} - \eta_k I) p_{n,k}(\mathcal{C}) = \mathcal{C} p_n(\mathcal{C}) - \tilde{\eta}_k I,$$

yields,

$$\sum_{i=0}^{n} \gamma_{i,k} \mathcal{C}^{i+1} - \sum_{i=0}^{n} \eta_k \gamma_{i,k} \mathcal{C}^i - \sum_{i=0}^{n} \gamma_i \mathcal{C}^{i+1} + \tilde{\eta}_k I = 0. \quad (*)$$

Difference equation (*) can be solved:

$$\begin{split} \gamma_{n,k} &= \gamma_n \\ \gamma_{i-1,k} &= \gamma_{i-1} + \eta_k \gamma_{i,k}, \quad \text{for } i = n, ..., 1 \\ \tilde{\eta}_k &= \eta_k \gamma_{0,k} \end{split}$$

M. Baumann @ TU Berlin

Second level: shifted polynomial preconditioners (2/2)

Substitution into,

$$(\mathcal{C} - \eta_k I) p_{n,k}(\mathcal{C}) = \mathcal{C} p_n(\mathcal{C}) - \tilde{\eta}_k I,$$

yields,

$$\sum_{i=0}^{n} \gamma_{i,k} \mathcal{C}^{i+1} - \sum_{i=0}^{n} \eta_k \gamma_{i,k} \mathcal{C}^i - \sum_{i=0}^{n} \gamma_i \mathcal{C}^{i+1} + \tilde{\eta}_k I = 0. \quad (*)$$

< □ ▶

· • @ • • = • • = •

Difference equation (*) can be solved:

$$\begin{split} \gamma_{n,k} &= \gamma_n \\ \gamma_{i-1,k} &= \gamma_{i-1} + \eta_k \gamma_{i,k}, \quad \text{for } i = n, ..., 1 \\ \tilde{\eta}_k &= \eta_k \gamma_{0,k} \end{split}$$

M. Baumann @ TU Berlin

2 Optimization of seed frequency

3 Shifted Neumann preconditioners

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

20 / 28

The (damped) time-harmonic elastic wave equation

Continuous setting Elastic wave equation

$$-\omega_k^2 \rho(\mathbf{x}) \mathbf{u}_k - \nabla \cdot \sigma(\mathbf{u}_k) = \mathbf{s}$$

with boundary conditions

$$\begin{split} &i\omega_k\rho(\mathbf{x})B\mathbf{u}_k+\sigma(\mathbf{u}_k)\mathbf{\hat{n}}=\mathbf{0},\\ &\sigma(\mathbf{u}_k)\mathbf{\hat{n}}=\mathbf{0}, \end{split}$$

on $\partial \Omega_a \cup \partial \Omega_r$.

Discrete setting

Solve

$$(K + i\omega_k C - \omega_k^2 M)\mathbf{u}_k = \mathbf{s}$$

with FEM matrices

$$egin{aligned} &\mathcal{K}_{ij} = \int_\Omega \sigma(oldsymbol{arphi}_i) :
abla oldsymbol{arphi}_j \; d\Omega, \ &\mathcal{M}_{ij} = \int_\Omega
ho(\mathbf{x}) oldsymbol{arphi}_i \cdot oldsymbol{arphi}_j \; d\Omega, \ &\mathcal{C}_{ij} = \int_{\partial\Omega_a}
ho(\mathbf{x}) B oldsymbol{arphi}_i \cdot oldsymbol{arphi}_j \; d\Gamma. \end{aligned}$$

M. Baumann @ TU Berlin

TUDelft

The (damped) time-harmonic elastic wave equation

Continuous setting Elastic wave equation

$$-\omega_k^2 \rho(\mathbf{x}) \mathbf{u}_k - \nabla \cdot \sigma(\mathbf{u}_k) = \mathbf{s}$$

with boundary conditions

$$\begin{split} &i\omega_k\rho(\mathbf{x})B\mathbf{u}_k+\sigma(\mathbf{u}_k)\mathbf{\hat{n}}=\mathbf{0},\\ &\sigma(\mathbf{u}_k)\mathbf{\hat{n}}=\mathbf{0}, \end{split}$$

on $\partial \Omega_a \cup \partial \Omega_r$.

Discrete setting

Solve

olve

$$\hat{\omega}_k = (1 - \epsilon i)\omega_k$$

 $(K + i\omega_k C - \omega_k^2 M)\mathbf{u}_k = \mathbf{s}$

with FEM matrices

$$egin{aligned} &\mathcal{K}_{ij} = \int_\Omega \sigma(oldsymbol{arphi}_i) :
abla oldsymbol{arphi}_j \; d\Omega, \ &\mathcal{M}_{ij} = \int_\Omega
ho(\mathbf{x}) oldsymbol{arphi}_i \cdot oldsymbol{arphi}_j \; d\Omega, \ &\mathcal{C}_{ij} = \int_{\partial\Omega_a}
ho(\mathbf{x}) B oldsymbol{arphi}_i \cdot oldsymbol{arphi}_j \; d\Gamma. \end{aligned}$$

M. Baumann @ TU Berlin

TUDelft

Numerical experiments (1/5)

Set-up: An elastic wedge problem.

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

< □ ▶

· • @ • • = • • = •

Numerical experiments (2/5)

$$\tau^*(\epsilon) = \sqrt{\omega_1 \omega_{n_{\rm s}}(1+\epsilon^2)} \cdot e^{i \arctan\left(-\sqrt{\frac{\epsilon^2(\omega_1+\omega_{n_{\rm s}})^2+(\omega_{n_{\rm s}}-\omega_1)^2}{4\omega_1\omega_{n_{\rm s}}}}\right)}$$

$\omega_1/2\pi$ [Hz]	$\omega_{n_s}/2\pi$ [Hz]	n _s	# iterations	CPU time [s]
	5	2	92	34.71
1		10	92	36.43
		20	92	38.76
		2	207	137.77
1	10	10	207	151.17
		20	207	166.28

- damping factor $\epsilon = 0.07$
- #dofs = 48,642 (Q_1 finite elements)
- no polynomial preconditioner (n = 0)

TUDelft

Numerical experiments (3/5)

Convergence behavior:

- ω_{\min} and ω_{\max} converge slowest,
- smallest factor R/|ck| yields fastest convergence,
- 'inner' frequencies for free.

Numerical experiments (4/5)

Optimality of τ^* in terms of no. iterations.

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

25 / 28

(a)

Numerical experiments (5/5)

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerical experiments (5/5)

TUDelft

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

- ✓ Optimal shift-and-invert preconditioner for msGMRES.
- Can be used for 'optimal' shifted polynomial preconditioner.
- **X** Optimality for $\epsilon = 0$ only by continuity.
- ? For multi-core CPUs: Splitting strategy of frequency range.
- ? Relation to pole selection in rational Krylov methods.

Thank you for your attention! Nice to be back at TU Berlin ©

Conclusions

- ✓ Optimal shift-and-invert preconditioner for msGMRES.
- Can be used for 'optimal' shifted polynomial preconditioner.
- **X** Optimality for $\epsilon = 0$ only by continuity.
- ? For multi-core CPUs: Splitting strategy of frequency range.
- ? Relation to pole selection in rational Krylov methods.

Thank you for your attention! Nice to be back at TU Berlin ©

References

- M. Baumann and M.B. Van Gijzen. *Nested Krylov methods for shifted linear systems.* SIAM J. Sci. Comput., **37**(5), S90-S112 (2015).
- M. Baumann, R. Astudillo, Y. Qiu, E. Ang, M.B. Van Gijzen, and R.-E. Plessix. An MSSS-Preconditioned Matrix Equation Approach for the Time-Harmonic Elastic Wave Equation at Multiple Frequencies. DIAM Technical Report 16-04, TU Delft [under review].
- M. Baumann and M.B. Van Gijzen. An Efficient Two-level Preconditioner for Multi-Frequency Wave Propagation Problems. DIAM Technical Report 17-03, TU Delft [in preparation].
 - M. Baumann and M.B. Van Gijzen. Efficient iterative methods for multi-frequency wave propagation problems: A comparison study. Proceeding of ICCS 2017 [under review].

Research funded by Shell.

(a)

MSSS matrix computations "in a nutshell"

Definition: SSS matrix

[Chandrasekaran et al., 2005]

Let A be an $n \times n$ block matrix with sequentially semi-seperable structure. Then A can be written in the following block partitioned form

$$A_{i,j} = \begin{cases} U_i W_{i+1} \cdots W_{j-1} V_j^T, & \text{if } i < j; \\ D_i, & \text{if } i = j; \\ P_i R_{i-1} \cdots R_{j+1} Q_j^T, & \text{if } i > j. \end{cases}$$

- linear computational complexity for $(\cdot)^{-1}$
- limit off-diagonal rank with MOR
- MSSS: constructors are SSS matrices

The 3D elastic operator $(K + i\tau C - \tau^2 M) \rightsquigarrow (\cdot)^{-1}$

M. Baumann @ TU Berlin

An optimal shift-and-invert preconditioner

28 / 28

< D > < B > < E > < E >

GMRES - Generalized minimal residual method

Solve large-scale linear system ($N \gg m$):

$$A\mathbf{x} = \mathbf{b}, \text{ where } A \in \mathbb{R}^{N \times N}$$

approximately in *m*-th Krylov subspace,

$$\mathbf{x}_m \in \mathcal{K}_m(A, \mathbf{b}) := \operatorname{span} \left\{ \mathbf{b}, A\mathbf{b}, ..., A^{m-1}\mathbf{b} \right\}.$$

Arnoldi relation yields,

$$AV_m = V_{m+1}\underline{H}_m,$$

and GMRES method minimizes residual:

$$\mathbf{x}_{m} = \underset{\mathbf{x} \in \mathcal{K}_{m}(A, \mathbf{b})}{\operatorname{argmin}} \|\mathbf{b} - A\mathbf{x}\|_{2} = \underset{\mathbf{y} \in \mathbb{R}^{m}}{\operatorname{argmin}} \|\mathbf{b} - AV_{m}\mathbf{y}\|_{2}$$
$$= \underset{\mathbf{y} \in \mathbb{R}^{m}}{\operatorname{argmin}} \|\mathbf{b} - V_{m+1}\underline{\mathbf{H}}_{m}\mathbf{y}\|_{2} = \dots = \underset{\mathbf{y} \in \mathbb{R}^{m}}{\operatorname{argmin}} \|\beta\mathbf{e}_{1} - \underline{\mathbf{H}}_{m}\mathbf{y}\|_{2}.$$

M. Baumann @ TU Berlin

4 Delft