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Context of this work (1/3)

Why are we all here?

Definition: Shifted linear systems

We want to efficiently solve

(A− σk I )xk = b

for multiple shifts {σ1, ..., σNσ},Nσ ∈ N.

The efficiency of our numerical method heavily relies on the
shift-invariance property of Krylov subspaces,

Km(A,b) ≡ span{b,Ab, ...,Am−1b} = Km(A− σI ,b).
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Context of this work (2/3)

Where it all began?

References

A. Saibaba, T. Bakhos, and P. Kitanidis. A flexible Krylov solver for
shifted systems with application to oscillatory hydraulic tomography.
SIAM J. Sci. Comput. 35:3001-3023 (2013).

M. Ahmad, D. Szyld, and M. van Gijzen. Preconditioned multishift
BiCG for H2-optimal model reduction. Report 12-06-15, Temple
University (2013).

Their combined message is:

Many shifted Laplace preconditioners can be used in a
flexible multi-shift Krylov method (Tania et al.)

Polynomial preconditioners preserve shift-invariance
(Mian et al.)
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Context of this work (3/3)

What does the present work contribute?

We present a nested Krylov solver for shifted linear systems:

1 Use a multi-shift Krylov method as an inner method
(the preconditioner),

2 use a flexible multi-shift Krylov method as an outer
method,

3 apply a single shifted Laplace preconditioner as a first layer.

In this talk, we will concentrate on 1-2, and comment on 3
when presenting numerical tests.
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Nested (inner-outer) multi-shift Krylov methods

Solve the shifted linear systems

(A− σk I ) xk = b, k = 1, ...,Nσ,

with a nested Krylov method based on

Km(A, r0) = Km(A− σI , r0) ∀σ.

inner method
(preconditioner)

outer method

outer iter++

early truncation
collinear residuals
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Inner method: multi-shift FOM

Classical result: In FOM, the residuals are:

rj = b−Axj = ... = −hj+1,je
T
j yjvj+1.

Thus, for the shifted residuals it holds:

r
(σ)
j = b− (A− σI )x

(σ)
j = ... = −h

(σ)
j+1,je

T
j y

(σ)
j vj+1.

Hence, we obtain collinear residuals,

r
(σ)
j = γrj ,

with factor γ = y
(σ)
j /yj .

Reference

V. Simoncini. Restarted full orthogonalization method for shifted linear
systems. BIT Numerical Mathematics, 43 (2003).
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Outer method: flexible multi-shift GMRES (1/3)

Use flexible GMRES in the outer loop,

(A− σI )V̂m = Vm+1H
(σ)
m ,

where one column yields:

(A− σI )P(σ)−1j vj︸ ︷︷ ︸
inner loop

= Vm+1h
(σ)
j , 1 ≤ j ≤ m.

Recap: The “inner loop” is the truncated solution of (A− σI )
with right-hand side vj using msFOM.
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Outer method: flexible multi-shift GMRES (2/3)

The inner residuals are:

r
(σ)
j = vj − (A− σI )P(σ)−1j vj ,

rj = vj −AP−1j vj .

Imposing r
(σ)
j = γrj yields:

(A− σI )P(σ)−1j vj = γAP−1j vj − (γ − 1)vj
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Outer method: flexible multi-shift GMRES (3/3)

Altogether,

(A− σI )P(σ)−1j vj = Vm+1h
(σ)
j

γAP−1j vj − (γ − 1)vj = Vm+1h
(σ)
j

γVm+1hj − Vm+1 (γ − 1) ej = Vm+1h
(σ)
j

Vm+1

(
γhj − (γ − 1) ej

)
= Vm+1h

(σ)
j

which yields:

H
(σ)
m = (Hm − Im) Γm + Im,

with Γm := diag(γ1, ..., γm).
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Summary: Nested FOM-FGMRES

In nested FOM-FGMRES, we solve the following (small)
optimization problem,

x
(σ)
m = argmin

x∈V̂m
‖b− (A− σI )x‖

= argmin
y∈Cm

∥∥∥b− (A− σI )V̂my
∥∥∥

= argmin
y∈Cm

∥∥∥b− Vm+1H
(σ)
m y

∥∥∥
= argmin

y∈Cm

∥∥∥βe1 − ((Hm − Im) Γ
(σ)
m + Im

)
y
∥∥∥ ,

where the entries of Γ
(σ)
m are collinearity factors of inner FOM.

M. Baumann @ LA15 () Krylov methods for shifted linear systems 10 / 21



By the way...

Our key findings,

H
(σ)
m = (Hm − Im) Γ

(σ)
m + Im, Γ

(σ)
m := diag(γ

(σ)
1 , ..., γ

(σ)
m ),

are closely related to the formula,

H
(σ)
m = Im − Hm(σIm − Tm), Tm := diag(τ1, ..., τm),

which is taken from [Bakhos et al, 2013] and adapted in
notation.
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Application & numerical tests
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Application (1/3)
Full-waveform inversion

PDE-constrained optimization:

min
ρ(x),cp(x),cs(x)

‖usim − umeas‖,

where in our application:

usim is the (numerical) solution of the elastic wave
equation,

umeas is obtained from measurements,

ρ, cp, cs are properties of earth layers we are interested in.

The modeling is done in frequency-domain.
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Application (2/3)
The discrete forward model

An FEM discretization of the time-harmonic, inhomogeneous
elastic wave equation at multiple frequencies σk is given by:

(K + iσkC − σ2kM)uk = s, k = 1, ...,Nσ,

where

M,K are mass and stiffness matrix, respectively,

C encounters Sommerfeld boundary conditions,

s usually models a point source,

we need to compute the displacement vector uk for
multiple frequencies (shifts) σk .
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Application (3/3)
Reformulation to shifted linear systems

We can reformulate the previous problem to:[(
iC K
I 0

)
− σk

(
M 0
0 I

)](
σkuk
uk

)
=

(
s
0

)
,

which is of the form:

(A− σkM)xk = b.

Apply shifted Laplace preconditioner

P = (A− τM), with =(τ) > 0.
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Numerical experiments (1/4)
as presented in [B./vG., 2014]

Test case from literature:

Ω = [0, 1]× [0, 1]

h = 0.01 implying
n = 10.201 grid points

system size:
4n = 40.804

Nσ = 6 frequencies

point source at center

Reference

T. Airaksinen, A. Pennanen, J. Toivanen. A damping preconditioner for
time-harmonic wave equations in fluid and elastic material. Journal of
Computational Physics, 2009.
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Numerical experiments (2/4)
as presented in [B./vG., 2014]

Preconditioned multi-shift
GMRES:

simultaneous solve

linear convergence rates

τ = (0.7− 0.7i)σmax

CPU time: 17.71s
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Numerical experiments (3/4)
as presented in [B./vG., 2014]

Preconditioned nested
FOM-FGMRES:

20 inner iterations

truncate when inner
residual norm ∼ 0.1

very few outer iterations

CPU time: 9.12s
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Numerical experiments (4/4)
as presented in [B./vG., 2014]

Various combinations of nested algorithms:

multi-shift Krylov methods
msGMRES rest msGMRES QMRIDR(4) msIDR(4)

# inner iterations - 20 - -
# outer iterations 103 7 136 134

CPU time 17.71s 6.13s 22.35s 22.58s
nested multi-shift Krylov methods

FOM-FGMRES IDR(4)-FGMRES FOM-FQMRIDR(4) IDR(4)-FQMRIDR(4)

# inner iterations 20 25 30 30
# outer iterations 7 9 5 15

CPU time 9.12s 32.99s 8.14s 58.36s
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Conclusions and future work

3 Inner-outer Krylov methods for Ax = b are widely used
 We present an extension to shifted linear systems

3 Multiple combinations of inner-outer methods possible,
e.g. FOM-FGMRES, IDR-FQMRIDR, ...

? Future work: 3D problems
I discretization using TU/e package

nutils (high-order FEM)
I approximate shifted Laplacian

with MSSS preconditioner
I nested solver in a coupled

Python - Fortran framework
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Thank you for your attention!

Further reading:

M. Baumann and M. B. van Gijzen. Nested Krylov methods
for shifted linear systems. SIAM J. Sci. Comput. [in press]

Research funded by Shell.
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Shifted systems appear a lot in practice...

...which is why we meet again for PART II at 3:00 pm.
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