Nested Krylov methods for shifted linear systems

M. Baumann^{*,†} and M. B. van Gijzen[†]

*Email: M.M.Baumann@tudelft.nl [†]Delft Institute of Applied Mathematics Delft University of Technology Delft, The Netherlands

June 19, 2015

Preconditioning Conference 2015, TU Eindhoven, NL

Motivation (1/3)Full-waveform inversion

PDE-constrained optimization:

$$\min_{\boldsymbol{\rho}(\mathbf{x}), \boldsymbol{c}_{\boldsymbol{\rho}}(\mathbf{x}), \boldsymbol{c}_{s}(\mathbf{x})} \| \mathbf{u}_{sim} - \mathbf{u}_{meas} \|,$$

where in our application:

- **u**_{sim} is the (numerical) solution of the elastic wave equation,
- **u**_{meas} is obtained from measurements,
- ρ , c_p , c_s are properties of earth layers we are interested in.

The modeling is done in frequency-domain.

Motivation (2/3)The discrete forward model

An FEM discretization of the time-harmonic, inhomogeneous elastic wave equation at multiple frequencies ω_k is given by:

$$(K + i\omega_k C - \omega_k^2 M)\mathbf{u}_k = \mathbf{s}, \quad k = 1, ..., N,$$

where

- K, C, M are sparse and symmetric,
- s usually models a point source,
- we need to compute the displacement vector u_k for multiple frequencies (shifts) ω_k.

Motivation (2/3)The discrete forward model

An FEM discretization of the time-harmonic, inhomogeneous elastic wave equation at multiple frequencies ω_k is given by:

$$(K + i\omega_k C - \omega_k^2 M)\mathbf{u}_k = \mathbf{s}, \quad k = 1, ..., N,$$

where

- K, C, M are sparse and symmetric,
- s usually models a point source,
- we need to compute the displacement vector u_k for multiple frequencies (shifts) ω_k.

Motivation (3/3) Multi-shift Krylov methods

We can re-formulate the previous problem to:

$$\begin{bmatrix} \begin{pmatrix} iC & K \\ I & 0 \end{pmatrix} - \omega_k \begin{pmatrix} M & 0 \\ 0 & I \end{pmatrix} \end{bmatrix} \begin{pmatrix} \omega_k \mathbf{u}_k \\ \mathbf{u}_k \end{pmatrix} = \begin{pmatrix} \mathbf{s} \\ 0 \end{pmatrix},$$

which is of the form:

$$(\mathcal{A} - \omega_k \mathcal{M})\mathbf{x}_k = \mathbf{b}$$

Shift-invariance of Krylov subspaces:

 $\mathcal{K}_m(\mathcal{A}, \mathbf{r}_0) \equiv \operatorname{span}\{\mathbf{r}_0, \mathcal{A}\mathbf{r}_0, ..., \mathcal{A}^{m-1}\mathbf{r}_0\} = \mathcal{K}_m(\mathcal{A} - \omega I, \mathbf{r}_0)$

is challenging to *preserve* when preconditioning!

▶ **∢ 🗇 ▶ ∢ 글 ▶ ∢ 글 ▶**

Motivation (3/3) Multi-shift Krylov methods

We can re-formulate the previous problem to:

$$\begin{bmatrix} \begin{pmatrix} iC & K \\ I & 0 \end{pmatrix} - \omega_k \begin{pmatrix} M & 0 \\ 0 & I \end{pmatrix} \end{bmatrix} \begin{pmatrix} \omega_k \mathbf{u}_k \\ \mathbf{u}_k \end{pmatrix} = \begin{pmatrix} \mathbf{s} \\ 0 \end{pmatrix},$$

which is of the form:

$$(\mathcal{A} - \omega_k \mathcal{M})\mathbf{x}_k = \mathbf{b}.$$

Shift-invariance of Krylov subspaces:

 $\mathcal{K}_m(\mathcal{A}, \mathbf{r}_0) \equiv \operatorname{span}\{\mathbf{r}_0, \mathcal{A}\mathbf{r}_0, ..., \mathcal{A}^{m-1}\mathbf{r}_0\} = \mathcal{K}_m(\mathcal{A} - \omega \mathbf{I}, \mathbf{r}_0)$

is challenging to *preserve* when preconditioning!

· • @ • • = • • = •

Motivation (3/3) Multi-shift Krylov methods

We can re-formulate the previous problem to:

$$\begin{bmatrix} \begin{pmatrix} iC & K \\ I & 0 \end{pmatrix} - \omega_k \begin{pmatrix} M & 0 \\ 0 & I \end{pmatrix} \end{bmatrix} \begin{pmatrix} \omega_k \mathbf{u}_k \\ \mathbf{u}_k \end{pmatrix} = \begin{pmatrix} \mathbf{s} \\ 0 \end{pmatrix},$$

which is of the form:

$$(\mathcal{A} - \omega_k \mathcal{M})\mathbf{x}_k = \mathbf{b}.$$

Shift-invariance of Krylov subspaces:

 $\mathcal{K}_m(\mathcal{A}, \mathbf{r}_0) \equiv \operatorname{span}\{\mathbf{r}_0, \mathcal{A}\mathbf{r}_0, ..., \mathcal{A}^{m-1}\mathbf{r}_0\} = \mathcal{K}_m(\mathcal{A} - \omega \mathbf{I}, \mathbf{r}_0)$

is challenging to *preserve* when preconditioning!

· • @ • • = • • = •

Preconditioners for shifted linear systems

2004 (Complex) shifted Laplace preconditioner:

$$\mathcal{P} = (\mathcal{A} - \tau \mathcal{M}), \quad \tau \approx \{\omega_1, ..., \omega_N\}$$

2007 Many shifted Laplace preconditioners:

$$\mathcal{P}_j = (\mathcal{A} - \tau_j \mathcal{M})$$

2013 Polynomial preconditioners [Plenary talk at PRECON13]

2014 Question: Can we use a Krylov method as preconditioner? → Nested Krylov methods

Preconditioners for shifted linear systems

2004 (Complex) shifted Laplace preconditioner:

$$\mathcal{P} = (\mathcal{A} - \tau \mathcal{M}), \quad \tau \approx \{\omega_1, ..., \omega_N\}$$

2007 Many shifted Laplace preconditioners:

$$\mathcal{P}_j = (\mathcal{A} - \tau_j \mathcal{M})$$

2013 Polynomial preconditioners [Plenary talk at PRECON13]

2014 Question: Can we use a Krylov method as preconditioner? \rightsquigarrow Nested Krylov methods

Outline

Inner-outer Krylov methods for shifted linear systems

M. Baumann

· • @ • • = • • = •

The generalized shifted Laplace preconditioner,

$$\mathcal{P} = (\mathcal{A} - \tau \mathcal{M}), \quad \tau \in \mathbb{C},$$
 (*)

has two benefits:

- it transforms our problem to shifted linear systems and, hence, enables the benefits of shift-invariant Krylov spaces,
- it maps the original spectrum to circles of known center and radius.

Moreover, (*) is easy to apply because $\tau \in \mathbb{C}$ leads to a damped problem \rightsquigarrow multigrid works!

The generalized shifted Laplace preconditioner,

$$\mathcal{P} = (\mathcal{A} - \tau \mathcal{M}), \quad \tau \in \mathbb{C},$$
 (*)

has two benefits:

- it transforms our problem to shifted linear systems and, hence, enables the benefits of shift-invariant Krylov spaces,
- it maps the original spectrum to circles of known center and radius.

Moreover, (*) is easy to apply because $\tau \in \mathbb{C}$ leads to a damped problem \rightsquigarrow multigrid works!

For $\mathcal{P} = (\mathcal{A} - \tau \mathcal{M})$, the following relation holds:

$$(\mathcal{A} - \omega_k \mathcal{M}) \mathcal{P}_k^{-1} = \mathcal{A} \mathcal{P}^{-1} - \eta_k(\omega) \mathbf{I}, \qquad (**)$$

with

•
$$\mathcal{P}_k^{-1} = \frac{\tau}{\tau - \omega_k} \mathcal{P}^{-1}$$

• $\eta_k = \omega_k / (\omega_k - \tau)$

• τ is a free parameter (seed shift)

For the spectrum of the RHS in (**), we see:

$$\sigma\left(\mathcal{AM}^{-1}\right) \ni \lambda \mapsto \frac{\lambda}{\lambda - \tau} - \eta_k$$

M. Baumann

> < 同 > < 三 > < 三 >

For $\mathcal{P} = (\mathcal{A} - \tau \mathcal{M})$, the following relation holds:

$$(\mathcal{A} - \omega_k \mathcal{M}) \mathcal{P}_k^{-1} = \mathcal{A} \mathcal{P}^{-1} - \eta_k(\omega) \mathbf{I}, \qquad (**)$$

with

•
$$\mathcal{P}_k^{-1} = \frac{\tau}{\tau - \omega_k} \mathcal{P}^{-1}$$

• $\eta_k = \omega_k / (\omega_k - \tau)$

• τ is a free parameter (seed shift)

For the spectrum of the RHS in (**), we see:

$$\sigma(\mathcal{AM}^{-1}) \ni \lambda \mapsto \frac{\lambda}{\lambda - \tau} - \eta_k$$

M. Baumann

· • @ • • = • • = •

The shifted Laplacian - Spectral analysis

Compare:

Open question: What's the optimal τ for equidistantly spaced frequencies $\omega_1, ..., \omega_N$???

TUDelft

· • @ • • = • • = •

The shifted Laplace preconditioner and its relation to Möbius transformations

Inner-outer Krylov methods for shifted linear systems

M. Baumann

Krylov methods for shifted linear systems

Solve the preconditioned shifted problem, $\mathcal{B} := \mathcal{AP}^{-1}$,

$$(\mathcal{B} - \eta_k I) \mathbf{x}_k = \mathbf{b}, \quad k = 1, ..., N,$$

$$\mathcal{K}_k(\mathcal{B},\mathbf{r}_0) = \mathcal{K}_k(\mathcal{B}-\eta I,\mathbf{r}_0) \quad \forall \eta.$$

Solve the preconditioned shifted problem, $\mathcal{B} := \mathcal{AP}^{-1}$,

$$(\mathcal{B} - \eta_k I) \mathbf{x}_k = \mathbf{b}, \quad k = 1, ..., N,$$

$$\mathcal{K}_k(\mathcal{B},\mathbf{r}_0) = \mathcal{K}_k(\mathcal{B}-\eta I,\mathbf{r}_0) \quad \forall \eta.$$

Solve the preconditioned shifted problem, $\mathcal{B} := \mathcal{AP}^{-1}$,

$$(\mathcal{B} - \eta_k I) \mathbf{x}_k = \mathbf{b}, \quad k = 1, ..., N,$$

$$\mathcal{K}_k(\mathcal{B},\mathbf{r}_0) = \mathcal{K}_k(\mathcal{B}-\eta I,\mathbf{r}_0) \quad \forall \eta.$$

Solve the preconditioned shifted problem, $\mathcal{B} := \mathcal{AP}^{-1}$,

$$(\mathcal{B} - \eta_k I) \mathbf{x}_k = \mathbf{b}, \quad k = 1, ..., N,$$

$$\mathcal{K}_k(\mathcal{B},\mathbf{r}_0) = \mathcal{K}_k(\mathcal{B}-\eta I,\mathbf{r}_0) \quad \forall \eta.$$

Solve the preconditioned shifted problem, $\mathcal{B} := \mathcal{AP}^{-1}$,

$$(\mathcal{B} - \eta_k I) \mathbf{x}_k = \mathbf{b}, \quad k = 1, ..., N,$$

$$\mathcal{K}_k(\mathcal{B},\mathbf{r}_0) = \mathcal{K}_k(\mathcal{B}-\eta I,\mathbf{r}_0) \quad \forall \eta.$$

Solve the preconditioned shifted problem, $\mathcal{B} := \mathcal{AP}^{-1}$,

$$(\mathcal{B} - \eta_k I) \mathbf{x}_k = \mathbf{b}, \quad k = 1, ..., N,$$

$$\mathcal{K}_k(\mathcal{B},\mathbf{r}_0) = \mathcal{K}_k(\mathcal{B}-\eta I,\mathbf{r}_0) \quad \forall \eta.$$

Solve the preconditioned shifted problem, $\mathcal{B} := \mathcal{AP}^{-1}$,

$$(\mathcal{B} - \eta_k I) \mathbf{x}_k = \mathbf{b}, \quad k = 1, ..., N,$$

$$\mathcal{K}_k(\mathcal{B},\mathbf{r}_0) = \mathcal{K}_k(\mathcal{B}-\eta I,\mathbf{r}_0) \quad \forall \eta.$$

Inner method: multi-shift FOM

Classical result: In FOM, the residuals are:

$$\mathbf{r}_j = \mathbf{b} - \mathcal{B}\mathbf{x}_j = \dots = -h_{j+1,j}\mathbf{e}_j^T\mathbf{y}_j\mathbf{v}_{j+1}.$$

Thus, for the shifted residuals it holds:

$$\mathbf{r}_{j}^{(\eta)} = \mathbf{b} - (\mathcal{B} - \eta I)\mathbf{x}_{j}^{(\eta)} = ... = -h_{j+1,j}^{(\eta)}\mathbf{e}_{j}^{\mathsf{T}}\mathbf{y}_{j}^{(\eta)}\mathbf{v}_{j+1}.$$

 $\mathbf{r}_i^{(\eta)} = \gamma \mathbf{r}_j,$

Hence, we obtain collinear residuals,

with factor
$$\gamma = y_j^{(\eta)}/y_j$$
.

Reference

V. Simoncini, *Restarted full orthogonalization method for shifted linear systems*. BIT Numerical Mathematics, 43 (2003).

Inner method: multi-shift FOM

Classical result: In FOM, the residuals are:

$$\mathbf{r}_j = \mathbf{b} - \mathcal{B}\mathbf{x}_j = \dots = -h_{j+1,j}\mathbf{e}_j^T\mathbf{y}_j\mathbf{v}_{j+1}.$$

Thus, for the shifted residuals it holds:

$$\mathbf{r}_{j}^{(\eta)} = \mathbf{b} - (\mathcal{B} - \eta I)\mathbf{x}_{j}^{(\eta)} = ... = -h_{j+1,j}^{(\eta)}\mathbf{e}_{j}^{\mathsf{T}}\mathbf{y}_{j}^{(\eta)}\mathbf{v}_{j+1}.$$

Hence, we obtain collinear residuals,

$$\mathbf{r}_{j}^{(\eta)}=\gamma\mathbf{r}_{j}$$

with factor $\gamma = y_j^{(\eta)}/y_j$.

Reference

V. Simoncini, *Restarted full orthogonalization method for shifted linear systems.* BIT Numerical Mathematics, 43 (2003).

Use flexible GMRES in the outer loop,

$$(\mathcal{B}-\eta I)\widehat{V}_m=V_{m+1}\underline{H}_m^{(\eta)},$$

where one column yields:

$$(\mathcal{B} - \eta I) \underbrace{\mathcal{P}(\eta)_j^{-1} \mathbf{v}_j}_{\text{inner loop}} = V_{m+1} \underline{\mathbf{h}}_j^{(\eta)}, \quad 1 \leq j \leq m.$$

Recap: The "inner loop" is the truncated solution of $(\mathcal{B} - \eta I)$ with right-hand side \mathbf{v}_i using msFOM.

Use flexible GMRES in the outer loop,

$$(\mathcal{B}-\eta I)\widehat{V}_m=V_{m+1}\underline{H}_m^{(\eta)},$$

where one column yields:

$$(\mathcal{B} - \eta I) \underbrace{\mathcal{P}(\eta)_j^{-1} \mathbf{v}_j}_{\text{inner loop}} = V_{m+1} \underline{\mathbf{h}}_j^{(\eta)}, \quad 1 \leq j \leq m.$$

Recap: The "inner loop" is the truncated solution of $(\mathcal{B} - \eta I)$ with right-hand side \mathbf{v}_i using msFOM.

The inner residuals are:

$$\mathbf{r}_{j}^{(\eta)} = \mathbf{v}_{j} - (\mathcal{B} - \eta I)\mathcal{P}(\eta)_{j}^{-1}\mathbf{v}_{j},$$

$$\mathbf{r}_{j} = \mathbf{v}_{j} - \mathcal{B}\mathcal{P}_{j}^{-1}\mathbf{v}_{j}.$$

Imposing
$$\mathbf{r}_{j}^{(\eta)} = \gamma \mathbf{r}_{j}$$
 yields:
 $(\mathcal{B} - \eta I) \mathcal{P}(\eta)_{i}^{-1} \mathbf{v}_{i} = \gamma \mathcal{B} \mathcal{P}_{i}^{-1} \mathbf{v}_{i} - (\gamma - 1) \mathbf{v}_{i}$

< D > < B > < E > < E >

The inner residuals are:

$$\mathbf{r}_{j}^{(\eta)} = \mathbf{v}_{j} - (\mathcal{B} - \eta I)\mathcal{P}(\eta)_{j}^{-1}\mathbf{v}_{j},$$

$$\mathbf{r}_{j} = \mathbf{v}_{j} - \mathcal{B}\mathcal{P}_{j}^{-1}\mathbf{v}_{j}.$$

Imposing
$$\mathbf{r}_{j}^{(\eta)} = \gamma \mathbf{r}_{j}$$
 yields:
 $(\mathcal{B} - \eta I) \mathcal{P}(\eta)_{j}^{-1} \mathbf{v}_{j} = \gamma \mathcal{B} \mathcal{P}_{j}^{-1} \mathbf{v}_{j} - (\gamma - 1) \mathbf{v}_{j}$

M. Baumann

(日) (同) (三) (三)

Altogether,

$$(\mathcal{B} - \eta I)\mathcal{P}(\eta)_{j}^{-1}\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$\gamma \mathcal{B}\mathcal{P}_{j}^{-1}\mathbf{v}_{j} - (\gamma - 1)\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$\gamma V_{m+1}\underline{\mathbf{h}}_{j} - V_{m+1}(\gamma - 1)\underline{\mathbf{e}}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$V_{m+1}(\gamma \underline{\mathbf{h}}_{j} - (\gamma - 1)\underline{\mathbf{e}}_{j}) = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$

which yields:

$$\underline{\mathbf{H}}_{m}^{(\eta)} = (\underline{\mathbf{H}}_{m} - \underline{\mathbf{I}}_{m})\,\mathbf{\Gamma}_{m} + \underline{\mathbf{I}}_{m},$$

with $\Gamma_m := diag(\gamma_1, ..., \gamma_m)$.

Altogether,

$$(\mathcal{B} - \eta I)\mathcal{P}(\eta)_{j}^{-1}\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$\gamma \mathcal{B}\mathcal{P}_{j}^{-1}\mathbf{v}_{j} - (\gamma - 1)\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$\gamma V_{m+1}\underline{\mathbf{h}}_{j} - V_{m+1}(\gamma - 1)\underline{\mathbf{e}}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$V_{m+1}(\gamma \underline{\mathbf{h}}_{j} - (\gamma - 1)\underline{\mathbf{e}}_{j}) = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$

which yields:

$$\underline{\mathbf{H}}_{m}^{(\eta)} = (\underline{\mathbf{H}}_{m} - \underline{\mathbf{I}}_{m}) \, \mathbf{\Gamma}_{m} + \underline{\mathbf{I}}_{m},$$

with $\Gamma_m := diag(\gamma_1, ..., \gamma_m)$.

Altogether,

$$(\mathcal{B} - \eta I)\mathcal{P}(\eta)_{j}^{-1}\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$\gamma \mathcal{B}\mathcal{P}_{j}^{-1}\mathbf{v}_{j} - (\gamma - 1)\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$\gamma V_{m+1}\underline{\mathbf{h}}_{j} - V_{m+1}(\gamma - 1)\underline{\mathbf{e}}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$V_{m+1}(\gamma \underline{\mathbf{h}}_{j} - (\gamma - 1)\underline{\mathbf{e}}_{j}) = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$

which yields:

$$\underline{\mathbf{H}}_{m}^{(\eta)} = (\underline{\mathbf{H}}_{m} - \underline{\mathbf{I}}_{m}) \, \mathbf{\Gamma}_{m} + \underline{\mathbf{I}}_{m},$$

with $\Gamma_m := diag(\gamma_1, ..., \gamma_m)$.

15 / 22

Altogether,

$$(\mathcal{B} - \eta I)\mathcal{P}(\eta)_{j}^{-1}\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$\gamma \mathcal{B}\mathcal{P}_{j}^{-1}\mathbf{v}_{j} - (\gamma - 1)\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$\gamma V_{m+1}\underline{\mathbf{h}}_{j} - V_{m+1}(\gamma - 1)\underline{\mathbf{e}}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$V_{m+1}(\gamma \underline{\mathbf{h}}_{j} - (\gamma - 1)\underline{\mathbf{e}}_{j}) = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$

which yields:

$$\underline{\mathbf{H}}_{m}^{(\eta)} = (\underline{\mathbf{H}}_{m} - \underline{\mathbf{I}}_{m}) \, \mathbf{\Gamma}_{m} + \underline{\mathbf{I}}_{m},$$

with $\Gamma_m := diag(\gamma_1, ..., \gamma_m)$.

15 / 22

Altogether,

$$(\mathcal{B} - \eta I)\mathcal{P}(\eta)_{j}^{-1}\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$\gamma \mathcal{B}\mathcal{P}_{j}^{-1}\mathbf{v}_{j} - (\gamma - 1)\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$\gamma V_{m+1}\underline{\mathbf{h}}_{j} - V_{m+1}(\gamma - 1)\underline{\mathbf{e}}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$
$$V_{m+1}(\gamma \underline{\mathbf{h}}_{j} - (\gamma - 1)\underline{\mathbf{e}}_{j}) = V_{m+1}\underline{\mathbf{h}}_{j}^{(\eta)}$$

which yields:

$$\underline{\mathbf{H}}_{m}^{(\eta)} = (\underline{\mathbf{H}}_{m} - \underline{\mathbf{I}}_{m}) \, \mathbf{\Gamma}_{m} + \underline{\mathbf{I}}_{m},$$
$$\mathbf{\Gamma}_{m} := diag(\gamma_{1}, ..., \gamma_{m}).$$

tuDelft

with

(日) (同) (三) (三)

Summary: Nested FOM-FGMRES

In nested FOM-FGMRES, we solve the following (small) optimization problem,

$$\begin{aligned} \mathbf{x}_{m}^{(\eta)} &= \operatorname*{argmin}_{\mathbf{x}\in\widehat{\mathcal{V}}_{m}} \|\mathbf{b} - (\mathcal{B} - \eta I)\mathbf{x}\| \\ &= \operatorname*{argmin}_{\mathbf{y}\in\mathbb{C}^{m}} \|\mathbf{b} - (\mathcal{B} - \eta I)\widehat{\mathcal{V}}_{m}\mathbf{y}\| \\ &= \operatorname*{argmin}_{\mathbf{y}\in\mathbb{C}^{m}} \|\mathbf{b} - \mathcal{V}_{m+1}\underline{\mathbf{H}}_{m}^{(\eta)}\mathbf{y}\| \\ &= \operatorname*{argmin}_{\mathbf{y}\in\mathbb{C}^{m}} \|\beta\mathbf{e}_{1} - \left((\underline{\mathbf{H}}_{m} - \underline{\mathbf{I}}_{m})\Gamma_{m}^{(\eta)} + \underline{\mathbf{I}}_{m}\right)\mathbf{y}\|, \end{aligned}$$

where the entries of $\Gamma_m^{(\eta)}$ are collinearity factors of inner FOM.

TUDelft

▶ ◀┌ः ▶ ◀ 글 ▶ ◀

Numerical experiments (1/4) as presented in [B./vG., 2014]

Test case from literature:

- $\Omega = [0,1] \times [0,1]$
- *h* = 0.01 implying
 n = 10.201 grid points
- system size:
 - 4n = 40.804
- N = 6 frequencies
- point source at center

Reference

• T. Airaksinen, A. Pennanen, J. Toivanen, A damping preconditioner for time-harmonic wave equations in fluid and elastic material. Journal of Computational Physics, 2009.

· • @ • • = • • = •

Numerical experiments (2/4) as presented in [B./vG., 2014]

Preconditioned **multi-shift GMRES**:

- simultaneous solve
- linear convergence rates

•
$$\tau = (0.7 - 0.7i)\omega_{max}$$
 ??

• CPU time: 17.71s

M. Baumann

Numerical experiments (3/4) as presented in [B./vG., 2014]

Preconditioned **nested FOM-FGMRES**:

- 20 inner iterations
- truncate when inner residual norm ~ 0.1
- very few outer iterations
- CPU time: 9.12s

Numerical experiments (4/4) as presented in [B./vG., 2014]

Various combinations of nested algorithms:

	multi-shift Krylov methods			
	msGMRES	rest_msGMRES	QMRIDR(4)	msIDR(4)
# inner iterations	-	20	-	-
# outer iterations	103	7	136	134
CPU time	17.71s	6.13s	22.35s	22.58s
	nested multi-shift Krylov methods			
	FOM-FGMRES	IDR(4)-FGMRES	FOM-FQMRIDR(4)	<pre>IDR(4)-FQMRIDR(4)</pre>
# inner iterations	20	25	30	30
# outer iterations	7	9	5	15
CPU time	9.12s	32.99s	8.14s	58.36s

Krylov methods for shifted linear systems

(a)

M. Baumann

Conclusions and future work

- ✓ Inner-outer Krylov methods for Ax = b are widely used → We present an extension to shifted linear systems
- ✓ The shifted Laplace preconditioner is applied as a *first layer*
- ? Future work: 3D problems
 - discretization using TU/e package nutils (high-order FEM)
 - approximate shifted Laplacian with AGMG
 - nested solver in Fortran90

Thank you for your attention!

Further reading:

M. Baumann and M. B. van Gijzen. *Nested Krylov methods for shifted linear systems.* SIAM Journal on Scientific Computing (SISC), Special Issue Copper Mountain Conference 2014 [in press].

Research funded by Shell.

