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Motivation (1/3)
Full-waveform inversion

PDE-constrained optimization:

min
ρ(x),cp(x),cs(x)

‖usim − umeas‖,

where in our application:

usim is the (numerical) solution of the elastic wave
equation,

umeas is obtained from measurements,

ρ, cp, cs are properties of earth layers we are interested in.

The modeling is done in frequency-domain.
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Motivation (2/3)
The discrete forward model

An FEM discretization of the time-harmonic, inhomogeneous
elastic wave equation at multiple frequencies ωk is given by:

(K + iωkC − ω2
kM)uk = s, k = 1, ...,N,

where

K ,C ,M are sparse and symmetric,

s usually models a point source,

we need to compute the displacement vector uk for
multiple frequencies (shifts) ωk .
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Motivation (3/3)
Multi-shift Krylov methods

We can re-formulate the previous problem to:[(
iC K
I 0

)
− ωk

(
M 0
0 I

)](
ωkuk
uk

)
=

(
s
0

)
,

which is of the form:

(A− ωkM)xk = b.

Shift-invariance of Krylov subspaces:

Km(A, r0) ≡ span{r0,Ar0, ...,Am−1r0}=Km(A− ωI , r0)

is challenging to preserve when preconditioning!
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Preconditioners for shifted linear systems

2004 (Complex) shifted Laplace preconditioner:

P = (A− τM), τ ≈ {ω1, ..., ωN}

2007 Many shifted Laplace preconditioners:

Pj = (A− τjM)

2013 Polynomial preconditioners [Plenary talk at PRECON13]

2014 Question: Can we use a Krylov method as preconditioner?
 Nested Krylov methods
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Outline

1 The shifted Laplace preconditioner and its relation to Möbius
transformations

2 Inner-outer Krylov methods for shifted linear systems

3 Numerical experiments

4 Conclusion
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The shifted Laplacian

The generalized shifted Laplace preconditioner,

P = (A− τM), τ ∈ C, (∗)

has two benefits:

1 it transforms our problem to shifted linear systems and,
hence, enables the benefits of shift-invariant Krylov spaces,

2 it maps the original spectrum to circles of known center
and radius.

Moreover, (∗) is easy to apply because τ ∈ C leads to a
damped problem  multigrid works!
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The shifted Laplacian

For P = (A− τM), the following relation holds:

(A− ωkM)P−1k = AP−1 − ηk(ω)I , (∗∗)

with

P−1k = τ
τ−ωk

P−1

ηk = ωk/(ωk − τ)

τ is a free parameter (seed shift)

For the spectrum of the RHS in (∗∗), we see:

σ
(
AM−1

)
3 λ 7→ λ

λ− τ
− ηk
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The shifted Laplacian - Spectral analysis

Compare:

σ(A− ωkM) vs. σ
(
(A− ωkM)P−1k

)
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Open question: What’s the optimal τ for equidistantly spaced
frequencies ω1, ..., ωN ???
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Nested (inner-outer) multi-shift Krylov methods

Solve the preconditioned shifted problem, B := AP−1,

(B − ηk I ) xk = b, k = 1, ...,N,

with a nested Krylov method based on

Kk(B, r0) = Kk(B − ηI , r0) ∀η.

inner method
(preconditioner)

outer method

outer iter++

early truncation
collinear residuals
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Inner method: multi-shift FOM

Classical result: In FOM, the residuals are:

rj = b− Bxj = ... = −hj+1,je
T
j yjvj+1.

Thus, for the shifted residuals it holds:

r
(η)
j = b− (B − ηI )x

(η)
j = ... = −h

(η)
j+1,je

T
j y

(η)
j vj+1.

Hence, we obtain collinear residuals,

r
(η)
j = γrj ,

with factor γ = y
(η)
j /yj .

Reference
V. Simoncini, Restarted full orthogonalization method for shifted linear
systems. BIT Numerical Mathematics, 43 (2003).
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Outer method: flexible multi-shift GMRES (1/3)

Use flexible GMRES in the outer loop,

(B − ηI )V̂m = Vm+1H
(η)
m ,

where one column yields:

(B − ηI )P(η)−1j vj︸ ︷︷ ︸
inner loop

= Vm+1h
(η)
j , 1 ≤ j ≤ m.

Recap: The “inner loop” is the truncated solution of (B − ηI )
with right-hand side vj using msFOM.
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Outer method: flexible multi-shift GMRES (2/3)

The inner residuals are:

r
(η)
j = vj − (B − ηI )P(η)−1j vj ,

rj = vj − BP−1j vj .

Imposing r
(η)
j = γrj yields:

(B − ηI )P(η)−1j vj = γBP−1j vj − (γ − 1)vj
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Outer method: flexible multi-shift GMRES (3/3)

Altogether,

(B − ηI )P(η)−1j vj = Vm+1h
(η)
j

γBP−1j vj − (γ − 1)vj = Vm+1h
(η)
j

γVm+1hj − Vm+1 (γ − 1) ej = Vm+1h
(η)
j

Vm+1

(
γhj − (γ − 1) ej

)
= Vm+1h

(η)
j

which yields:

H
(η)
m = (Hm − Im) Γm + Im,

with Γm := diag(γ1, ..., γm).
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Summary: Nested FOM-FGMRES

In nested FOM-FGMRES, we solve the following (small)
optimization problem,

x
(η)
m = argmin

x∈V̂m
‖b− (B − ηI )x‖

= argmin
y∈Cm

∥∥∥b− (B − ηI )V̂my
∥∥∥

= argmin
y∈Cm

∥∥∥b− Vm+1H
(η)
m y
∥∥∥

= argmin
y∈Cm

∥∥∥βe1 − ((Hm − Im) Γ
(η)
m + Im

)
y
∥∥∥ ,

where the entries of Γ
(η)
m are collinearity factors of inner FOM.
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Numerical experiments (1/4)
as presented in [B./vG., 2014]

Test case from literature:

Ω = [0, 1]× [0, 1]

h = 0.01 implying
n = 10.201 grid points

system size:
4n = 40.804

N = 6 frequencies

point source at center

Reference

T. Airaksinen, A. Pennanen, J. Toivanen, A damping preconditioner
for time-harmonic wave equations in fluid and elastic material.
Journal of Computational Physics, 2009.
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Numerical experiments (2/4)
as presented in [B./vG., 2014]

Preconditioned multi-shift
GMRES:

simultaneous solve

linear convergence rates

τ = (0.7− 0.7i)ωmax ??

CPU time: 17.71s
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Numerical experiments (3/4)
as presented in [B./vG., 2014]

Preconditioned nested
FOM-FGMRES:

20 inner iterations

truncate when inner
residual norm ∼ 0.1

very few outer iterations

CPU time: 9.12s
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Numerical experiments (4/4)
as presented in [B./vG., 2014]

Various combinations of nested algorithms:

multi-shift Krylov methods
msGMRES rest msGMRES QMRIDR(4) msIDR(4)

# inner iterations - 20 - -
# outer iterations 103 7 136 134

CPU time 17.71s 6.13s 22.35s 22.58s
nested multi-shift Krylov methods

FOM-FGMRES IDR(4)-FGMRES FOM-FQMRIDR(4) IDR(4)-FQMRIDR(4)

# inner iterations 20 25 30 30
# outer iterations 7 9 5 15

CPU time 9.12s 32.99s 8.14s 58.36s
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Conclusions and future work

3 Inner-outer Krylov methods for Ax = b are widely used
 We present an extension to shifted linear systems

3 The shifted Laplace preconditioner is applied as a first layer

? Future work: 3D problems
I discretization using TU/e package

nutils (high-order FEM)
I approximate shifted Laplacian

with AGMG
I nested solver in Fortran90
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Thank you for your attention!

Further reading:

M. Baumann and M. B. van Gijzen. Nested Krylov methods
for shifted linear systems. SIAM Journal on Scientific
Computing (SISC), Special Issue Copper Mountain
Conference 2014 [in press].

Research funded by Shell.
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