Fast Iterative Solution of the Time-Harmonic Elastic Wave Equation at Multiple Frequencies

Manuel M. Baumann

January 10, 2018
Question you have asked me today...

- Are you nervous? → Yes!

Questions you have asked me during the last years...

- What is your PhD project about?
- What is numerical linear algebra?
- What have you been doing all day? (The German word for this is: rumdoktorn)
Question you have asked me today...

- Are you nervous? → Yes!

Questions you have asked me during the last years...

- What is your PhD project about?
- What is numerical linear algebra?
- What have you been doing all day?
 (The German word for this is: *rumdoktorn*)
Question you have asked me today...

- Are you nervous? → Yes!

Questions you have asked me during the last years...

- What is your PhD project about?
 - What is numerical linear algebra?
 - What have you been doing all day?
 (The German word for this is: rumdoktorn)
Question you have asked me today...

- Are you nervous? → Yes!

Questions you have asked me during the last years...

- What is your PhD project about?
- What is numerical linear algebra?
- What have you been doing all day?
 (The German word for this is: rumdoktorn)
Question you have asked me today...

- Are you nervous? → Yes!

Questions you have asked me during the last years...

- What is your PhD project about?
- What is numerical linear algebra?
- What have you been doing all day? (The German word for this is: rumdoktorn)
What is applied mathematics?

"Applied maths is about using mathematics to solve real world problems neither seeking nor avoiding mathematical difficulties."

–Lord Rayleigh
What is applied mathematics?

"Applied maths is about using mathematics to solve real world problems neither seeking nor avoiding mathematical difficulties."

–Lord Rayleigh
Seismic Full-Waveform Inversion

Interplay of...
- measurements,

Solve the linear systems of equations,

\[
(K + i\omega k C - \omega^2 k M) x_k = b,
\]
efficiently (= fast and at low memory) for multiple frequencies.
Seismic Full-Waveform Inversion

Interplay of...
- measurements,
Seismic Full-Waveform Inversion

Interplay of...
- measurements,
- seismology,

\[(K + \omega_k C - \omega_k^2 M) x_k = b, \]

efficiently (= fast and at low memory) for multiple frequencies.
Seismic Full-Waveform Inversion

Interplay of...
- measurements,
- seismology,
Seismic Full-Waveform Inversion

Interplay of...
- measurements,
- seismology,
- computer simulations
 \rightarrow matrix computations

\[
(K + i\omega k C - \omega^2 k M)x_k = b
\]

Efficiently (= fast and at low memory) for multiple frequencies.
Seismic Full-Waveform Inversion

Interplay of...
- measurements,
- seismology,
- computer simulations → matrix computations

"Solve the linear systems of equations,

\[(K + i\omega_k C - \omega_k^2 M)x_k = b,\]

efficiently (= fast and at low memory) for multiple frequencies. “
Seismic Full-Waveform Inversion

Interplay of...
- measurements,
- seismology,
- computer simulations
 \[\omega_k \xrightarrow{\text{matrix computations}} x_k = \text{oil} = \$ \]

Density distribution

Simulations

\[\omega_1 \ldots \omega_N \]
Seismic Full-Waveform Inversion

Interplay of...
- measurements,
- seismology,
- computer simulations

$\omega_k \cdot \omega_k = \text{oil} = \$\Rightarrow \text{matrix computations}$

Density distribution

Simulations $\omega_1 \ldots \omega_N$
Numerical Linear Algebra

A very classical linear algebra problem,

\[
\begin{align*}
\text{bike} + \text{soccer} &= 1500 \\
\text{bike} + \text{tea} &= 7.5 \\
\text{beer} - \text{tea} &= 160
\end{align*}
\]

A more formal way of writing this,

\[
\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & -3
\end{bmatrix}
\begin{bmatrix}
\text{bike} \\
\text{soccer} \\
\text{tea}
\end{bmatrix}
=
\begin{bmatrix}
1500 \\
7.5 \\
160
\end{bmatrix}
\]
A very classical linear algebra problem,

\[
\begin{align*}
\text{BIKE} + \text{FOOTBALL} &= 1500 \\
\text{BIKE} + \text{TEA} &= 7.5 \quad \text{(123)} \\
\text{FOOTBALL} - \text{TEA} &= 160
\end{align*}
\]

A more formal way of writing this,

\[
\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & -3
\end{bmatrix}
\begin{bmatrix}
\text{BIKE} \\
\text{FOOTBALL} \\
\text{TEA}
\end{bmatrix}
=
\begin{bmatrix}
1500 \\
7.5 \\
160
\end{bmatrix}
\]
Numerical Linear Algebra

A very classical linear algebra problem,

\[\begin{align*}
\text{bike} + \text{soccer} &= 1500 \\
\text{bike} + \text{coffee} &= 7.5 \\
\text{soccer} - \text{coffee} &= 160
\end{align*} \]

A more formal way of writing this,

\[
\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & -3
\end{bmatrix}
\begin{bmatrix}
\text{bike} \\
\text{soccer} \\
\text{coffee}
\end{bmatrix}
=
\begin{bmatrix}
1500 \\
7.5 \\
160
\end{bmatrix}
\]
A very classical linear algebra problem,

\[
\begin{align*}
\text{bike} + \text{soccer} &= 1500 \\
\text{bike} + \text{coffee} &= 7.5 \\
\text{soccer} - \text{coffee} &= 160
\end{align*}
\]

A more formal way of writing this,

\[
\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & -3
\end{bmatrix}
\begin{bmatrix}
\text{bike} \\
\text{soccer} \\
\text{coffee}
\end{bmatrix}
=
\begin{bmatrix}
1500 \\
7.5 \\
160
\end{bmatrix}
\]
Numerical Linear Algebra

A very classical linear algebra problem,

\[
\begin{align*}
\text{bike} + \text{soccer ball} &= 1500 \\
\text{bike} + \text{coffee} &= 7.5 \\
\text{soccer ball} - \text{coffee} &= 160
\end{align*}
\]

A more formal way of writing this,

\[
\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & -3
\end{bmatrix}
\begin{bmatrix}
\text{bike} \\
\text{soccer ball} \\
\text{coffee}
\end{bmatrix} =
\begin{bmatrix}
1500 \\
7.5 \\
160
\end{bmatrix}
\]

\[=: A \quad =: x \quad =: b\]
A very classical linear algebra problem,

\[
\begin{align*}
\text{🚲} + \text{⚽} &= 1500 \\
\text{🚲} + \text{☕️} &= 7.5 \\
\text{⚽️} - \text{☕️} &= 160
\end{align*}
\]

A more formal way of writing this,

\[
\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 2 \\
0 & 2 & -3
\end{bmatrix}
\begin{bmatrix}
\text{🚲} \\
\text{⚽️} \\
\text{☕️}
\end{bmatrix}
= \begin{bmatrix}
1500 \\
7.5 \\
160
\end{bmatrix}
\]

The matrix \(A \) is symmetric
A very classical linear algebra problem,

\[
\begin{align*}
\text{\(\text{\textbullet}\) + \(\text{\textbullet}\)} & = 1500 \\
\text{\(\text{\textbullet}\)} & \quad + \quad \text{\(\text{\textbullet\textbullet}\)} = 7.5 \\
\text{\(\text{\textbullet\textbullet\textbullet}\)} & \quad - \quad \text{\(\text{\textbullet\textbullet\textbullet}\)} = 160
\end{align*}
\]

A more formal way of writing this,

\[
\begin{align*}
\begin{bmatrix}
* & * \\
* & * \\
* & *
\end{bmatrix}
\begin{bmatrix}
\text{\(\text{\textbullet}\)} \\
\text{\(\text{\textbullet}\textbullet\)} \\
\text{\(\text{\textbullet\textbullet\textbullet}\)}
\end{bmatrix}
& =
\begin{bmatrix}
1500 \\
7.5 \\
160
\end{bmatrix}
\end{align*}
\]

The matrix \(A\) is symmetric and sparse.
A very classical linear algebra problem,

\[
\begin{align*}
\text{bike} + \text{soccer} &= 1500 \\
\text{bike} + \text{coffee} &= 7.5 \\
\text{soccer} - \text{coffee} &= 160
\end{align*}
\]

A more formal way of writing this,

\[
\begin{align*}
\begin{bmatrix}
* & * \\
* & * \\
\end{bmatrix}
\begin{bmatrix}
\text{bike} \\
\text{soccer} \\
\text{coffee}
\end{bmatrix}
&=
\begin{bmatrix}
1500 \\
7.5 \\
160
\end{bmatrix}
\end{align*}
\]

The matrix \(A\) is symmetric and sparse.
Numerical Linear Algebra

The matrix A can be...
Numerical Linear Algebra

The matrix A can be...

- symmetric
- skew-symmetric
- positive (semi-)definite
- indefinite
- square
- rectangular
- sparse
- dense
- Port-Hamiltonian
- nilpotent
- low-rank
- diagonalizable
- upper Hessenberg
- block tri-diagonal
- sequentially semi-separable
- SPD
- Hermitian
- ill-conditioned
- invertible
The matrix A can be...

- sequentially semi-separable
- symmetric
- Hermitian
- skew-symmetric
- positive (semi-)definite
- indefinite
- square
- rectangular
- Port-Hamiltonian
- nilpotent
- low-rank
- diagonalizable
- upper Hessenberg
- block tri-diagonal
- dense
- sparse
- ill-conditioned
Shifted systems vs. matrix equation

Two main approaches for solving,

\[(K + i\omega_k C - \omega_k^2 M)x_k = b, \quad k > 1.\]
Shifted systems vs. matrix equation

Two main approaches for solving,

\[(K + i\omega_k C - \omega_k^2 M)\mathbf{x}_k = \mathbf{b}, \quad k > 1.\]

Shifted systems

\[
\begin{bmatrix}
 iC & K \\
 I & 0
\end{bmatrix} - \omega_k
\begin{bmatrix}
 M & 0 \\
 0 & I
\end{bmatrix}
\begin{bmatrix}
 \omega_k \mathbf{x}_k \\
 \mathbf{x}_k
\end{bmatrix} =
\begin{bmatrix}
 \mathbf{b} \\
 0
\end{bmatrix}
\]

- Most work for \(\mathbf{x}_0\) (at \(\omega = 0\))
- Requires preconditioning
Shifted systems vs. matrix equation

Two main approaches for solving,

\[(K + i\omega_k C - \omega_k^2 M)x_k = b, \quad k > 1.\]

Shifted systems

\[
\begin{pmatrix}
iC & K \\
I & 0
\end{pmatrix} - \omega_k \begin{pmatrix} M & 0 \\
0 & I
\end{pmatrix} \begin{pmatrix} \omega_k x_k \\
x_k
\end{pmatrix} = \begin{pmatrix} b \\
0
\end{pmatrix}
\]

- Most work for \(x_0\) (at \(\omega = 0\))
- Requires preconditioning

Matrix equation

\[KX + iCX\Omega - MX\Omega^2 = B\]

- Solve for \(X = [x_1, ..., x_N]\) all-at-once
- Requires preconditioning
Shifted systems vs. matrix equation

Two main approaches for solving,

\[(K + i\omega_k C - \omega_k^2 M)x_k = b, \quad k > 1.\]

Shifted systems

\[
\begin{bmatrix}
iC & K \\
I & 0
\end{bmatrix} - \omega_k
\begin{bmatrix}
M & 0 \\
0 & I
\end{bmatrix}
\begin{bmatrix}
\omega_k x_k \\
x_k
\end{bmatrix} =
\begin{bmatrix}
b \\
0
\end{bmatrix}
\]

- Most work for \(x_0\) (at \(\omega = 0\))
- Requires **preconditioning**

Matrix equation

\[KX + iCX\Omega - MX\Omega^2 = B\]

- Solve for \(X = [x_1, \ldots, x_N]\)
- **all-at-once**
- Requires **preconditioning**

Manuel Baumann
PhD Defense Talk
Preconditioning

Let \(A := K + i\omega C - \omega^2 M \)

Solve large-scale linear system,

\[Ax = b, \quad \text{with} \quad A \in \mathbb{C}^{N \times N}, \quad N \gg 1 \]

with an iterative method, i.e. compute \(x_i \) with \(x_i \to x \) as \(i \to \infty \).

Instead of \((*)\), solve the system

\[P^{-1}Ax = P^{-1}b, \]

where \(P \) is a preconditioner.
Preconditioning

However, it’s often not that simple!

\[
\begin{bmatrix}
iC & K \\
I & 0
\end{bmatrix} - \omega_k \begin{bmatrix} M & 0 \\
0 & I
\end{bmatrix} \begin{bmatrix} \omega_k x_k \\
x_k
\end{bmatrix} = \begin{bmatrix} b \\
0
\end{bmatrix}
\]

Main challenges:

- multiple linear systems
- single preconditioner
- wide frequency range
- preserve structure
Preconditioning

However, it’s often not that simple!

\[
\left(\begin{bmatrix} iC & K \\ I & 0 \end{bmatrix} - \omega_k \begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix} \right) \begin{bmatrix} \omega_k x_k \\ x_k \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}
\]

\[\tau^* = ?\]

Main challenges:

- multiple linear systems
- single preconditioner
- wide frequency range
- preserve structure
Spectral analysis
Spectral analysis

\[\epsilon > 0 \]
Spectral analysis

\[\epsilon > 0 \]
Spectral analysis
Spectral analysis

\[\epsilon > 0 \]

\[c \]

\[R_k \]

\[c_{k-1} \]

\[\varphi_{k-1} \]

\[C \]

\[C_1 \]

Manuel Baumann
PhD Defense Talk

8 / 13
Spectral analysis

Thm.: Optimal seed shift for multi-shift GMRES [B/vG, 2016]

(i) For $\lambda \in \Lambda[AB^{-1}]$ it holds $\Im(\lambda) \geq 0$.

(ii) The preconditioned spectra are enclosed by circles of radii R_k and center points c_k.

(iii) The points $\{c_k\}_{k=1}^N \subset \mathbb{C}$ described in statement (ii) lie on a circle with center c and radius R.

(iv) Consider the preconditioner $\mathcal{P}(\tau^*) = A - \tau^*B$. An optimal seed frequency τ^* for preconditioned multi-shift GMRES is given by,

$$\tau^*(\epsilon, \omega_1, \omega_N) = \min_{\tau \in \mathbb{C}} \max_{k=1,\ldots,N} \left(\frac{R_k(\tau)}{|c_k|} \right) = \ldots =$$

$$= \frac{2\omega_1\omega_N}{\omega_1 + \omega_N} - i \frac{\sqrt{[\epsilon^2(\omega_1 + \omega_N)^2 + (\omega_N - \omega_1)^2]}}{\omega_1 + \omega_N} \omega_1\omega_N$$
Spectral analysis

Thm.: Optimal seed shift for multi-shift GMRES [B/vG, 2016]

(i) For $\lambda \in \Lambda[AB^{-1}]$ it holds $\Im(\lambda) \geq 0$.

(ii) The preconditioned spectra are enclosed by circles of radii R_k and center points c_k.

(iii) The points $\{c_k\}_{k=1}^N \subset \mathbb{C}$ described in statement (ii) lie on a circle with center c and radius R.

(iv) Consider the preconditioner $P(\tau^*) = A - \tau^*B$. An optimal seed frequency τ^* for preconditioned multi-shift GMRES is given by,

$$
\tau^*(\epsilon, \omega_1, \omega_N) = \min_{\tau \in \mathbb{C}} \max_{k=1,\ldots,N} \left(\frac{R_k(\tau)}{|c_k|} \right) = \ldots = \\
= \frac{2\omega_1\omega_N}{\omega_1 + \omega_N} - i \frac{\sqrt{\epsilon^2(\omega_1 + \omega_N)^2 + (\omega_N - \omega_1)^2}}{\omega_1 + \omega_N} \omega_1\omega_N
$$
Spectral analysis

Proof:
Spectral analysis

Proof: Not now.
Spectral analysis

Proof: There is an App for that.
Convergence behavior and spectral bounds

For any τ...
Convergence behavior and spectral bounds

For the optimal τ^*...
Lot’s of details...
What happens today?

15:00 – 16:00 Formal PhD defense
16:15 – 17:30 Reception (in this building)
21:00 – ?? More reception (borrel) at Prinsenkwartier
Thank you all for coming!