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Summary

Fast Iterative Solution of the Time-Harmonic Elastic Wave Equation
at Multiple Frequencies

Manuel M. Baumann

This work concerns the efficient numerical solution of the elastic wave equation. The
elastic wave equation is a well-established partial differential equation (PDE) that
models wave propagation through an elastic medium such as the earth subsurface, and
is, therefore, of great importance in seismic applications. Geophysicists match simu-
lation results of the elastic wave equation with measurements in a PDE-constrained
optimization framework in order to gain information about the structure of the earth
subsurface. After spatial discretization and Fourier transform in time, the time-
harmonic elastic wave equation (forward problem) reads,

(K + iωkC − ω2
kM)xk = b, k = 1, ...,Nω, (H)

where the primary challenge of this work is the efficient numerical solution of (H)
when multiple (angular) wave frequencies are present, that is Nω > 1. This task
becomes in particular challenging when the elastic wave equation in three spatial di-
mensions is considered because the matrices K,C and M in (H) become very large and
ill-conditioned. In this situation, Krylov subspace methods are the common choice for
the iterative numerical solution of (H). Without appropriate preconditioning, how-
ever, the Krylov iteration converges slowly to the solutions of the linear systems (H).
The main contributions of this work are:

1. Development of an efficient shift-and-invert preconditioner designed for the si-
multaneous iterative solution when (H) is reformulated as a sequence of shifted
linear systems. The shift-and-invert preconditioner is optimal with respect to a
spectral convergence bound of multi-shift GMRES.

2. Implementation and development of an algorithmic framework that solves shifted
linear systems in a nested inner-outer iteration loop. The new algorithm has
been evaluated for different combinations of inner and outer multi-shift Krylov
methods.

3. In a practical application, the preconditioner is usually applied inexactly. We,
therefore, extend the recent theory of multilevel sequentially semiseperable
(MSSS) matrix computations to the elastic operator in two and three spatial
dimensions.
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This work can be seen as a continuation of the extensive research of the last decade
on the Complex Shifted Laplace preconditioner for the (discretized) acoustic wave
equation that has been performed to a large extend at Delft University of Technology.
The other way around, many of the contributions of this thesis also apply to the
Helmholtz operator in a multi-frequency setting. We conclude this work with various
numerical experiments in two (d = 2) and three (d = 3) spatial dimensions. In both
cases, the size of the computational mesh in one spatial direction n is restricted by
the highest wave frequency considered such that typically 20 points per wave length
are guaranteed. If ε > 0 denotes the viscous damping parameter, our algorithm has
shown computational complexity

O
(
nd+11{ε=0}

)
, where d ∈ {2, 3} and 11{ε=0} :=

{
0, if ε > 0,

1, if ε = 0,

when the grid size and the frequency range are increased simultaneously, and multiple
frequencies within this range are present.

Preconditioning techniques rely to a large extend on (numerical) approximations.
The approximation can, in general, be motivated by physical insight of the dynamical
behavior of the underlying PDE, or purely depend on the algebraic structure of the
matrix that is obtained after discretization. In this work we have exploited both
approaches to some extend: Inexact MSSS matrix computation techniques limit the
growth of the off-diagonal sub-matrix rank and, hence, rely on the structure of the
discretization matrix on a Cartesian grid. On the other hand, physical insight is used
when the shift-and-invert preconditioner is solved at a damped frequency. Due to the
damping, it is possible to efficiently slice a 3D problem into a sequence of 2D problems
(block SSOR preconditioner) and additionally solve the problem on a smaller 3D grid
(additive coarse grid correction).



Samenvatting

Snelle Iteratieve Oplossing van de Tijdsharmonische Elastische
Golfvergelijking bij Verschillende Frequenties

Manuel M. Baumann

Dit werk beschrijft een efficiënte numerieke oplossing van de elastische golfvergelijking.
De elastische golfvergelijking is een gevestigde parẗıele differentiaalvergelijking (PDV)
die golfvoortplanting modelleert door een elastisch medium, zoals bijvoorbeeld het
aardoppervlak, en is daarom van groot belang in seismische toepassingen. In de
geofysica worden simulatieresultaten van de elastische golfvergelijking vergeleken met
metingen in een PDV-begrensd optimalisatieframework om informatie te vergaren
over de structuur van het aardoppervlak. Na ruimtelijke discretisatie en Fourier
transformatie in de tijd, is de tijdsharmonische elastische golfvergelijking te schrijven
als,

(K + iωkC − ω2
kM)xk = b, k = 1, ...,Nω, (H)

waarbij de eerste uitdaging van dit werk de efficiënte numerieke oplossing is van (H)
waarbij meerdere frequenties meegenomen worden, oftewel Nω > 1. Deze opgave
wordt uitdagend als de elastische golfvergelijking in drie dimensies wordt beschouwd,
want de matrices K,C en M in (H) worden erg groot en slecht geconditioneerd.
In deze situatie worden Krylov deelruimtemethoden als de meest standaard keuze
beschouwd voor de iteratieve numerieke oplossing van (H). Zonder adequate precon-
ditionering convergeren de Krylov iteraties echter zeer langzaam naar de oplossingen
van de lineaire systemen (H). De algemene bijdragen van dit werk zijn:

1. Ontwikkeling van een efficiënte shift-and-invert preconditionering ontworpen
voor de simultaan-iteratieve oplossing als (H) herschreven is als een rij van
verschoven lineaire systemen. De shift-and-invert preconditionering is optimaal
met betrekking tot de spectrale convergentiegrens van multi-shift GMRES.

2. Implementatie en ontwikkeling van een algoritmisch framework dat de ver-
schoven lineaire systemen in een geneste binnen-buiten iteratie-loop oplost.

3. In een praktische toepassing wordt de preconditionering meestal niet exact
toegepast. Wij breiden daarom de recente theorie van multilevel sequentiële
semi-separabele (MSSS) matrixberekeningen uit naar de elastische operator in
twee en drie dimensies.
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Dit werk kan beschouwd worden als voortzetting van uitgebreid onderzoek van het
laatste decennium naar de Complex Shifted Laplace preconditionering voor de gedis-
cretiseerde akoestische golfvergelijking die voor het grootste deel is uitgevoerd door
de Technische Universiteit Delft. Aan de andere kant zijn veel bijdragen van deze
thesis ook van toepassing op de Helmholtz operator in een multi-frequentie setting.
Wij concluderen dit werk met verscheidene numerieke experimenten in twee en drie
ruimtelijke dimensies. In beide gevallen is de grootte van het grid in één richting n
begrensd door de hoogste frequentie zodanig dat typisch 20 punten per golflengte
gegarandeerd zijn. Als ε > 0 de visceuze dempingparameter beschrijft, geeft ons
algoritme een complexiteit van

O
(
nd+11{ε=0}

)
, met d ∈ {2, 3} en 11{ε=0} :=

{
0, als ε > 0,

1, als ε = 0,

als de gridgrootte en frequentieinterval simultaan worden opgehoogd en meerdere
frequenties aanwezig zijn in dit interval.

Preconditioneringstechnieken zijn sterk afhankelijk van (numerieke) benaderingen.
De benadering kan in het algemeen gemotiveerd worden door natuurkundig inzicht of
dynamisch gedrag van de onderliggende PDV, of puur afhangen van de algebräısche
structuur van de matrix die na discretisatie geconstrueerd is. In dit werk worden
beide benaderingen tot op zekere hoogte gebruikt: Niet-exacte MSSS matrixbereken-
ingstechnieken beperken de groei van de niet-diagonale sub-matrix rang en hangen
af van de structuur van de discretisatiematrix op een Cartesisch grid. Anderzijds,
natuurkundig inzicht wordt gebruikt wanneer de shift-and-invert preconditionering
wordt opgelost voor een gedempte frequentie. Door demping is het mogelijk om een
3D probleem efficiënt op te delen in een aantal 2D problemen (block SSOR precondi-
tioner) en bovendien het probleem op een kleiner 3D grid op te lossen (additive coarse
grid correction).



Chapter 1
Introduction

Understanding the structure of the earth subsurface is a major interest of seismological
research. A better understanding has positive impact not only on oil exploration but
also on earthquake warnings. In modern industry, research and development is often
done in combination with computer simulations. In the concrete case of seismic Full-
Waveform Inversion (FWI), simulation results are matched with measurements in
order to improve the understanding of the earth subsurface layers, cf. Figure 1.1.
Computer simulations on current hardwares are limited in computation speed as
well as memory storage. Therefore, state-of-the-art Numerical Linear Algebra (NLA)
is developing algorithms that are both fast and memory-efficient. In the overview
paper [153] on seismic FWI, the authors state:

“The main advantage of the iterative approach is the low memory require-
ment, although the main drawback results from a difficulty to design an
efficient preconditioner because the impedance matrix is indefinite. To our
knowledge, the extension to elastic wave equations still needs to be investi-
gated.” – J. Virieux and S. Operto (2009)

The above quote gives direct motivation for this thesis work. The main computational
bottleneck in a FWI algorithm is the numerical solution of the elastic wave equation
(forward problem). Especially for large wave frequencies and high-resolution simu-
lations, the solution of the elastic wave equation requires to solve a large system of
linear equations. Krylov subspace methods are a memory-efficient approach to solve
such systems of linear equations, but their convergence can be slow and, therefore,
preconditioning is subject to current research in NLA. The need for efficient precon-
ditioning becomes even more challenging when the simultaneous solution of multiple
linear systems that arise from multiple wave frequencies is required.

In the following introductory part, we derive the time-harmonic elastic wave equa-
tion and present several possibilities for its (spatial) discretization. Because our re-
search is focused on iterative Krylov methods, we review preconditioning techniques
that have recently been developed for the acoustic wave equation (Helmholtz equa-
tion). A main aspect of our work concerns the development of efficient Krylov al-
gorithms for multiple wave frequencies. Therefore, we also review existing precondi-
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2 Introduction Chapter 1

sender receivers

Figure 1.1: A simplified scheme of a land seismic experiment with sender and re-
ceivers. c© geophysicsRocks!

tioning techniques for multi-shift Krylov methods. The introduction concludes with a
closer look on seismic FWI. In the thesis outline, we emphasize the main contributions
of this thesis work.

1.1 The Time-Harmonic Elastic Wave Equation

We derive the displacement formulation of the wave equation in an inhomogeneous
elastic medium in two (d = 2) or three (d = 3) spatial dimensions. Our derivations are
based on the standard textbooks [7, 28, 55, 71, 86]. We will denote the vector-valued
displacement as,

u(x, t) =

u1(x, y, z, t)
u2(x, y, z, t)
u3(x, y, z, t)

 , for d = 3,

where x = (x, y, z) ∈ Ω ⊂ Rd denotes the spacial variables, and t > 0 denotes
time. The equation of motion, which is an analog of Newton’s second law “mass ×
acceleration = forces”, reads

ρü = ∇ · σ + s, for x ∈ Ω, t > 0, (1.1)

where the material density ρ = ρ(x) in an inhomogeneous medium is space-dependent
and s denotes external forces emitted by the sender in Figure 1.1. In one spatial
dimension, the stress tensor σ is related linearly to the strain ε via Hooke’s law,
σ = E · ε, with Young’s modulus E being determined for a specific material. For
higher dimensions, the stress-strain relation reads,

σ = C : ε = λ(x)tr(ε)Id + 2µ(x)ε (1.2)

= λ(x) (∇·u Id) + µ(x)
(
∇u + (∇u)

T
)

, (1.3)

with Id being the identity matrix of dimension d = {2, 3}.
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Here, the linearized strain tensor for isotropic† elastic‡ media is used,

ε(u) =
1

2

(
∇u + (∇u)

T
)

, (1.4)

and tr(·) in (1.2) denotes the trace of the strain tensor. The substitution of the strain
tensor (1.4) in (1.2) yields a relation for the stress in terms of the displacement vector,
i.e. σ = σ(u) as in (1.3). Seismic waves travel in compressional (primary) P-waves
and shear (secondary) S-waves.

Definition 1.1 (Tensor notation I, [86]) The divergence and the gradient of a
vector-valued function f = (f1, f2, f3)T that depends on three spatial variables x, y, z
are defined as:

∇·f :=
∂f1

∂x
+
∂f2

∂y
+
∂f3

∂z
, ∇f :=

∂f1
∂x

∂f2
∂x

∂f3
∂x

∂f1
∂y

∂f2
∂y

∂f3
∂y

∂f1
∂z

∂f2
∂z

∂f3
∂z

 .

The strain tensor ε in (1.4) is known as the symmetric gradient. Note that with ε as
in (1.4) it holds, ∇·f = tr(ε(f)).

Moreover, we introduce the Lamé parameters λ and µ in (1.5). The Lamé parame-
ters λ and µ are directly related to the material density ρ and the speed of P-waves cp
and the speed of S-waves cs via the well-know relations,

µ =
Eν

(1 + ν)(1− 2ν)
= c2sρ, λ =

E

2(1 + ν)
= ρ(c2p − 2c2s), (1.5)

with Poisson’s ratio ν. Due to the relations (1.5), the set of three parameter {ρ, cp, cs}
is sufficient to fully describe problem (1.1) and the boundary conditions discussed in
Section 1.1.1. The benchmark problems defined in Section 1.1.3 prescribe {ρ, cp, cs}
at all point in the computational domain x ∈ Ω ⊂ Rd.

When the Fourier transform, cf. Definition 1.2, is applied to (1.1), the time-
harmonic elastic wave equation yields,

−ω2ρ û−∇·σ(û) = ŝ, for x ∈ Ω ⊂ Rd. (1.6)

Here, the frequency-domain displacement vector û = û(x,ω) is a function of space
and the angular frequency ω = 2πf . In a practical application, the solution of (1.6)
at multiple frequencies {ω1, ...,ωNω} will be required, cf. Subsection 1.4.

Definition 1.2 (Fourier transform, [159]) The continuous Fourier transform of
a scalar function f ∈ L1(R) is defined as,

f̂(ω) := (Ff)(ω) =

∫
R
f(t)e−iωtdt ∀ω ∈ R.

In particular, for the first and second (temporal) derivatives, it holds,

F(ḟ) = iωF(f) and F(f̈) = −ω2F(f),

and, if f ∈ L2(R), Parseval’s identity holds,

‖f‖L2(R) = (2π)−1‖Ff‖L2(R).
†Those are materials with physical properties that are independent of direction in space.
‡A medium that is able to resume its original shape after being stretched or compressed.
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Remark 1.3 (The Helmholtz model) The acoustic (scalar) wave equation reads,

p̈− c2∆p = 0, (1.7)

where p is the pressure and c = c(x) the wave speed. A (finite difference) dis-
cretization with natural boundary conditions yields the well-known Helmholtz equa-
tion (K + k2I)p̂ = 0, with wavenumber k := 2πf/c = ω/c, for the time-harmonic
pressure p̂. The acoustic wave equation is the scalar analogue of (1.6) when choosing
(cp, cs) ≡ (c, 0), and no source term in (1.7).

Remark 1.4 (Frequency versus time-domain simulations) The elastic wave e-
quation (1.1) can be solved numerically in a method-of-lines approach using an ex-
plicit time integration scheme. The computational complexity of both frequency and
time domain has been compared multiple times [40, 103]. The comparison boils down
to ntO(nd) complexity for the time-domain versus nitO(nd) complexity for an iter-
ative Krylov method applied to a single frequency problem. We here assume that
matrix-vector products are the dominating costs and can be performed in O(nd).
Since the number of time steps nt (CFL condition) and the number of Krylov it-
erations nit [103, 112] both are proportional to n, this simple comparison emphasizes
the challenge to design an iterative algorithm simultaneous for multiple frequencies
nf > 1 in order for a frequency-domain approach to be competitive, i.e. nf ∈ O(1).

Remark 1.5 (Velocity-stress formulation) Using the substitution v := u̇, we
can re-write the system (1.1) and (1.3) as the so-called velocity-stress formulation [151],

v̇ = (∇·σ + s)/ρ,

σ̇ = λ (∇·v Id) + µ
(
∇v + (∇v)

T
)

,

which is a coupled first-order system with parameter set {ρ,λ,µ} and source term s.

1.1.1 Boundary Conditions and Damping Models

The time-harmonic elastic wave equation (1.6) is defined in the inside of the com-
putational domain Ω ⊂ Rd. This section concerns the modeling aspect of suitable
boundary conditions. We, therefore, split the boundary into ∂Ω = ∂Ωr ∪· ∂Ωa, where
we distinguish between absorbing (non-reflecting) boundary conditions on ∂Ωa and
reflecting boundary conditions on ∂Ωr.

Material-air Boundary Conditions

Typically, a free-surface boundary condition is prescribed in the North of the com-
putational domain, cf. Figure 1.1. Due to the large difference in material density, no
stresses are present normal to the boundary. The transformation of the free-surface
boundary condition to frequency-domain is straightforward:

σ(u)n = 0
F⇒ σ(û)n = 0 for x ∈ ∂Ωr. (1.8)

Note that for a Cartesian domain, the normal vector is simply n = (0, 0, 1)T on the
Northern boundary, ∂Ωr = ΓN . This stress-free boundary condition can be included
naturally in a finite element scheme, cf. Section 1.1.2.
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Absorbing Boundary Conditions

Absorbing (non-reflecting) boundary conditions are necessary to best mimic an infinite
dimensional domain. Outgoing waves are, therefore, enforced to have non-reflecting
behavior when the computational domain is truncated, i.e. on ∂Ωa = ∂Ωr \ ΓN . We
differentiate between (primary, or compressional) P-waves and (secondary, or shear)
S-waves. P-waves are parallel to the direction of wave propagation and S-waves are
perpendicular to the direction of propagation. The waves travel with wave speeds cp
and cs, respectively.

For simplicity, we consider first the south boundary and assume waves traveling
in (negative) z-direction, i.e. ∂Ωa = ΓS and normal vector equals n3 := (0, 0,−1)T.
A first order absorbing boundary condition [38, 65, 109] reads, ∂

∂t
−

cs cs
cp

 ∂

∂z


u1

u2

u3

 =

0
0
0

 , when x ∈ ∂Ωa = ΓS . (1.9)

Due to the sign in (1.9), waves can only traverse in negative z-direction, but not
in the opposite direction. Hence, condition (1.9) imposes non-reflection for x ∈ ΓS .
Assuming tangential derivatives to vanish and using relations (1.5) between the elastic
parameters, the following equivalent boundary conditions hold,

ρBu̇ + σ(u)n3 = 0, when x ∈ ∂Ωa = ΓS , and B := diag(cs, cs, cp).

After Fourier transform and going back to a general Cartesian boundary, the above
relation reads,

iωρ B(cp, cs)û + σ(û)n = 0, x ∈ ∂Ωa, (1.10)

with n normal to the boundary, and with generalized expression for the d×d matrix B
as given in [2, 92],

B(cp, cs) := cpnnT + cstt
T + csss

T, with t, s ⊥ n. (1.11)

Note the close relation of (1.10) to first order Sommerfeld radiation boundary condi-
tions widely used for modeling absorption for the Helmholtz equation (1.7). In [37], a
comparison of (1.9) with higher-order absorbing boundary conditions when the wave
direction has an angle different from normal to the boundary is performed.

Perfectly Matched Layers (PML) Boundary Conditions

An artificial sponge layer called PML region can be added to the computational
domain Ω at the absorbing boundary that damps and absorbs incoming waves. This
idea has originally been developed for Maxwell’s equation of electro-magnetic waves
and recently been extended to elastic waves [62]. To realize the PML, a coordinate
stretching function of the form

x̃j := sj(xj ,ω)xj , with sj(xj ,ω) = αj(xj)

(
1 + i

βj(xj)

ω

)
, j = 1, ..., d, (1.12)
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for the spatial coordinates x = (x1,x2,x3) is introduced. Inside the physical domain,
the coordinates remain unchanged, i.e. (αj ,βj) = (1, 0) for x ∈ Ω. Within the PML
region the coefficient functions αj ,βj realize non-reflective behavior [14, 141]. The
elastic wave equation (1.6) is transformed accordingly. Due to the definition of the
coordinate transformation (1.12), the elastic operator depends non-linearly on the
(angular) frequencies which makes PML unpractical in a multi-frequency framework
and for the focus of this thesis. The frequency-independent PML studied in [31] or a
suitable linearization can be promising alternatives.

Models for Viscous Damping

Including damping boundary conditions, ∂Ωa 6= ∅, yields a discretized elastic operator
that has spectral properties that make the problem generally easier to solve with an
iterative method, cf. our spectral analysis in Section 3.3. Moreover, viscous damping
can be added to the physical model by substitution of a complex-valued (angular)
frequency. A common damping model for the Helmholtz equation is to substitute
k2 7→ (1 − ε̂i)k2, i.e. ω2

k 7→ (1 − ε̂i)ω2
k, for 0 < ε̂ � 1; cf. [40, Remark 1.2.3].

This substitution does not include the Sommerfeld boundary conditions (1.10). In
this work, we model damping via ωk 7→ (1 − εi)ωk in (1.13). For small damping
parameters, both approaches coincide if ε̂ = ε/2 but note the consistent treatment
within a multi-frequency framework of the second approach.

1.1.2 Spatial Discretizations of the Elastic Wave Equation

Concluding Section 1.1.1, we have derived the time-harmonic elastic wave equa-
tion (1.6) together with suitable boundary conditions (1.8) and (1.10) for reflecting
and non-reflecting boundaries,

−ω2
kρ uk −∇·σ(uk) = s, for x ∈ Ω ⊂ Rd,

σ(uk)n = 0, for x ∈ ∂Ωr,
iωkρ Buk + σ(uk)n = 0, for x ∈ ∂Ωa,

 (1.13)

with n being normal to the respective boundary, σ and B as in (1.3) and (1.11),
respectively, and uk = u(x,ωk). In this thesis, we use a finite element discretization
for the above boundary value problem. Alternative approaches used in literature are
reviewed briefly.

Finite Difference Discretization

The most popular approach for the spatial discretization of the elastic wave equation
might be a finite difference approach used for instance in [58, 97, 152]. A finite
difference method can be slightly more memory-efficient than competing method but
it is limited to structured meshes and the accurate implementation of, for instance,
the stress-free boundary conditions (1.8) is non-trivial. A staggered-grid approach
using a high order finite difference approximation is used in [58].

Boundary Integral Methods

The advantage of boundary integral methods is that a discretization is only required
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on the surface, i.e. on a lower dimensional domain [83]. The methods rely on solving a
boundary integral equation based on Green’s function for homogeneous media. Such
fundamental (analytic) solution exist only in the case of homogeneous media which
are not considered in this thesis. Semi-analytic extensions to domains with layered
media exist [82].

Finite Element Discretization

The discretization approach followed in this thesis is a finite element method. The
following discretization ansatz is made for the vector-valued displacement,

uk(x) ≈
ndofs∑
i=1

uikϕi(x), x ∈ Ω ⊂ Rd, uik ∈ C. (1.14)

The test functions ϕi in (1.14) are typically polynomials on a compact support, see
Appendix A for more details on the choice of basis functions used. The ansatz (1.14)
can be substituted in (1.13). A Galerkin approach and integration by parts of the
stress tensor term yields the following weak form: Find ϕi ∈ [H1(Ω)]d such that,

−ω2
k

ndofs∑
i=1

uik

∫
Ω

ρ ϕi ·ϕj dΩ−
ndofs∑
i=1

uik

∫
Ω

∇·σ(ϕi) ·ϕj dΩ

=

∫
Ω

s ·ϕj dΩ, for all ϕj ∈ [H1(Ω)]d, (1.15)

j = 1, ...,ndofs, and for all source functions s ∈ [L1(Ω)]d. The boundary condi-
tions (1.8) and (1.10) can be included naturally in (1.15) after applying the divergence
theorem to the term

∫
Ω
∇ · σ(ϕi) ·ϕjdΩ. The numerical integration of the respective

terms yield the linear systems,

(K + iωkC − ω2
kM)xk = b, with ωk := 2πfk and k = 1, ...,Nω, (1.16)

with entries for {K,C,M} derived in detail in (4.10)-(4.11) in Section 4.1.2.
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Figure 1.2: Real part of the vertical displacement component for the 2D wedge problem
at different frequencies.
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1.1.3 Benchmark Problems in 2D and 3D

We present benchmark problems in 2D and 3D by defining the set of parameters
{ρ, cp, cs} for all x ∈ Ω. The Lamé parameters can be computed via (4.6). In the
choice of test cases we restrict ourselves to Cartesian domains for Ω.

The marmousi-II Test Problem

The marmousi-II problem is a standard two-dimensional benchmark problem for the
elastic wave equation. In this thesis, we consider a subset of the original problem [85]
on the domain Ω = [0, 4000]× [0, 1850] ⊂ R2, cf. Figure 1.3.
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]

1531

4450

(a) Speed of P-waves cp in m/s
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(b) Speed of S-waves cs in m/s
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2589

(c) Material density ρ in kg/m3

Figure 1.3: A subset of the well-known marmousi-II test problem [85] with removed top
water layer as proposed in [113].
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The data points in Figure 1.3 are given at an offset of hx = hz = 1.25m. This im-
plies ndofs = 9, 484, 800 degrees of freedom for the problem in Figure 1.3. For the wave
velocities present in Figure 1.3 this implies a maximum frequency of approximately
fmax = 12.5 Hz when 20 points per wavelength are used.

An Elastic Wedge Test Case for 2D and 3D

A three-dimensional benchmark problem has been defined for the computational do-
main Ω = [0, 600] × [0, 600] × [0, 1000] ⊂ R3 with elastic parameters {cp, cs, ρ} that
differ in three layers forming a wedge shape, cf. Figure 1.4a-1.4c. In some numerical
experiments, we use a slice along the xz-plane as a 2D wedge test problem, see Fig-
ure 1.2. In Figure 1.4d-1.4f, we present the numerical solution of (1.13) at f = 6 Hz
when a point source is placed at (300, 300, 0) and a grid size of 10 m is used. This grid
size yields a 3D elastic problem of roughly one million degrees of freedom, compare
Table 1.1.

(a) Speed of P-waves in m/s (b) Speed of S-waves in m/s (c) Material density in kg/m3

(d) <(u1) at f=6 Hz (e) <(u2) at f=6 Hz (f) <(u3) at f=6 Hz

Figure 1.4: Parameter distribution 1.4a-1.4c and numerical solution 1.4d-1.4f at
f = 6Hz for the 3D wedge problem.
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Table 1.1: Problem sizes of the 3D wedge benchmark problem for Q1 basis functions.
The maximum frequency fmax is restricted by a minimum of 20 points per wavelength
and the fastest wave speed {cp, cs} in the test case.

hx = hy = hz d× nx × ny × nz ndofs fmax

40m 3× 15× 15× 25 16, 875 1 Hz
20m 3× 30× 30× 50 135, 000 2 Hz
10m 3× 60× 60× 100 1, 080, 000 4 Hz
5m 3× 120× 120× 200 8, 640, 000 8 Hz

1.1.4 Reformulations of the Discrete Problem with an Empha-
sis on the Multi-Frequency Framework

The finite element discretization in Subsection 1.1.2 results in the discretized prob-
lem (1.16). ForNω > 1 (angular) frequencies, this yields a sequence of linear problems.
The most straightforward approach is the successive numerical solution, i.e. looping
over the frequency index k. In this thesis work, we consider two different approaches
for the simultaneous solution of the multi-frequency problem (1.16).

Problem 1.6 (Shifted systems formulation) Consider the sequence of lin-
ear problems,

(K + iωkC − ω2
kM)xk = b, k = 1, ...,Nω.

A linearization [66] of the form,

(K − ωkM)xk = b, k = 1, ...,Nω, (1.17)

with xk := [ωkxk, xk]T, right-hand side vector b := [b, 0]T and 2×2 block matrices

K :=

[
iC K
I 0

]
, and M :=

[
M 0
0 I

]
,

yields a shifted problem with linear dependency on the frequencies.

Algorithms based on the re-formulation in Problem 1.6 are the focus of Chapter 2
and Chapter 3 of this thesis. An alternative approach to the shifted systems reformu-
lation is considered in this thesis. In Problem 1.8, we state the re-formulation of (1.16)
as a matrix equation. The matrix equation formulation is exploited in Chapter 4 and
is subject to our comparison study in Chapter 5.

Remark 1.7 (Linearization (1.17) from a time-domain perspective) In Prob-
lem 1.6, the auxiliary variable v̂k := ωkûk is implicitly introduced in the unknown
vector xk. This is in close relation to the substitution v := u̇ for the velocity-stress
formulation in Remark 1.5.
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Problem 1.8 (Matrix equation formulation) Consider, again, the sequence
of linear problems,

(K + iωkC − ω2
kM)xk = b, k = 1, ...,Nω.

The problem can be reformulated as the matrix equation,

KX + iCXΩ−MXΩ2 = B, B := [b, ..., b],

where Ω := diag(ω1, ...,ωNω ) and the unknown X := [x1, ..., xNω ] consists of the
stacked solution vectors. The block right-hand side B trivially allows multiple
source terms.

Remark 1.9 (Matrix properties in (1.16)) If the matrices in Problem 1.6 and
Problem 1.8 stem from a finite element discretization, we obtain K,C symmetric
positive semidefinite, and M symmetric positive definite. For realistic seismic ap-
plications, the matrix (K + iωC − ω2M) is known to be highly ill-conditioned and
indefinite [153].

1.2 State-of-the-Art Preconditioning Techniques for
Helmholtz Problems

Partial differential equations, such as the time-harmonic elastic wave equation de-
scribed in detail in Section 1.1, yield after discretization a linear system of equations
of the general form,

Ax = b, with {x, b} ∈ CN and A ∈ CN×N sparse. (1.18)

The sparsity of the matrix A naturally follows from the considered discretization
scheme. If, for instance, a finite element approach is used then the ansatz (1.14)
implies that N = ndofs. Krylov subspace methods [81, 117] are a well-known tool to
solve linear systems with large and sparse matrix A because matrix-vector products
are comparably cheap. Generally speaking, an approximate solution xm ∈ Km(A, b)
to (1.18) is computed iteratively, and depending on the matrix properties different
Krylov methods are favorable. In (1.19) we introduce the m-th Krylov subspace,

Km(A, b) := span
{
b,Ab,A2b, ...,Am−1b

}
. (1.19)

Prominent Krylov subspace methods are GMRES [118], CG [64], Bi-CGSTAB [144]
and, more recently developed, IDR(s) [130]. For the wave equation, convergence of
Krylov methods is known to be very slow such that preconditioning [158] is required
in order to speed up convergence and, eventually, to obtain m� N .

In this section, we review state-of-the-art preconditioning techniques for the acous-
tic wave equation (1.7) (so-called Helmholtz problems) based on the recent mono-
graphs [52, 78]. To some extend, our work can be seen as a continuation of the recent
dissertations at Delft University of Technology [40, 76, 120].



12 Introduction Chapter 1

Remark 1.10 (Direct methods for (1.18)) Alternatively to Krylov subspace meth-
ods, direct methods compute an LU -factorization of A with lower (L) and upper (U)
diagonal matrices,

CN×N 3 A = LU or A ≈ LU .

On a 3D regular mesh the exact factorization requires O(N4/3) non-zeros in L and U ,
and O(N2) flops [26], with N = n3 if n := nx = ny = nz. The references [3, 97]
provide a feasibility study of (inexact) direct methods for the acoustic wave equation.

1.2.1 The Complex Shifted Laplace Preconditioner

Consider the single-frequency case in (1.16) and set A := (K+ iωC−ω2M). A single
preconditioner P can be applied to (1.18) in the following two ways,

P−1Ax = P−1b or AP−1y = b, with y := Px.

For a good preconditioner, we typically require:

1. The spectrum of P−1A (or of AP−1) is favorable to the spectrum of A which
leads to a faster convergence of the considered Krylov method. This can, for
instance, be achieved if P ≈ A in some sense.

2. The preconditioner can be applied cheaply with respect to a matrix-vector prod-
uct with A.

In [42, 44] the Complex Shifted Laplace (CSL) preconditioner is suggested as a
right preconditioner for high-frequency Helmholtz problems. For parameters β1,β2 ≥ 0,
the CSL preconditioner yields,

Pβ1,β2
:= (K + iωC)− (β1 − β2i)ω

2M = K̃ − (β1 − β2i)ω
2M . (1.20)

Note that for (β1,β2) = (1, 0) we get Pβ1,β2 = A. Moreover, when C ≡ 0 in (1.20)
and {K,M} stem from a discretization of (1.7), the name Complex Shifted Laplace
preconditioner is appropriate for β2 > 0. In Figure 1.5 we show the effect of the CSL
preconditioner on the spectrum. We point out that, for C ≡ 0, the unpreconditioned
spectrum is indefinite and widely spread over the real axis. The CSL preconditioner
yields a spectrum in the complex plane that is more clustered and enclosed by a
circle. In [42], the authors also suggest to use a multigrid approach [140] in order to
efficiently apply (1.20). The performance of the overall algorithm is demonstrated for
different combinations of (β1,β2), and in particular for large β2 multigrid works well
because the imaginary part of the CSL preconditioner from a physics point of view
corresponds to damping. The CSL preconditioner has lead to considerable attention
and triggered further research. In particular the authors of [147] derive an optimal
parameter (β1 − β2i) =: z2 for the CSL preconditioner with respect to a GMRES
convergence bound. The work of [147] is generalized to the multi-frequency framework
in Section 3. Extensions of the CSL preconditioner to the elastic case have been made
in [2, 113].
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Figure 1.5: Spectrum of a 2D Helmholtz surrogate problem for a single wave frequency,
and for C = 0 in (1.16). The CSL preconditioner (right) yields a much more clustered
spectrum that is enclosed by a circle.

1.2.2 Two-Level Preconditioning Techniques

We review two-level preconditioning techniques for the Helmholtz equation,

P2

(
P−1

1 A
)
x = b̃, (1.21)

where b̃ := P2P−1
1 b, and where typically P1 equals to the CSL preconditioner (1.20)

solved with a multigrid method, cf. Subsection 1.2.1. The need for a second-level
preconditioner is due to the fact that the spectrum solely preconditioned by the CSL
yields near-zero eigenvalues and the circle indicated in Figure 1.5 (right) touches the
origin.

Deflation as a second-level preconditioner has been studied in great detail and in
a more general framework in [134, 135]. The authors of [41, 122] analyze and apply
deflation on top of the CSL preconditioner, i.e,

P2 = I −AQ, Q := ZE−1ZT, E := ZTAZ, (1.22)

with prolongation and restriction operators as a choice for the deflation matrix Z.
By this choice, the matrix E in (1.22) resembles a coarse grid approximation of the
original matrix A. This second-level preconditioner is chosen such that the near-zero
eigenvalues are deflated. An additional shift of the spectrum yields the so-called
ADEF-1 methods [122, 134]. It is also possible to exchange the order of the two pre-
conditioners in (1.21) as has been studied by [123]. When a Krylov method is used
recursively for applying the inverse of E in (1.22), the overall algorithm is called a
multi-level Krylov method [43]. In Subsection 3.4, we make use of a two-level pre-
conditioning strategy. Spectral analysis for the single shift-and-invert preconditioner
(first-level preconditioner) is exploited for an efficient second-level preconditioner, cf.
subsections 3.4.1 and 3.4.2.
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1.2.3 Domain Decomposition Methods

In Remark 1.10 we mention direct methods and point out their relatively large mem-
ory requirements. Many different approaches of incomplete LU factorizations limit
the memory requirements, for instance by dropping non-zero elements. A block-LU
factorization of a matrix A is given by,

A =


S1

L1 S2

. . .
. . .

Ln−1 Sn



I1 S−1

1 U1

I2 S−1
2 U2

. . .
. . .

In

 =: LU , (1.23)

with so-called Schur complements,

S1 = D1, Sj = Dj − Lj−1S
−1
j−1Uj−1, if j ≥ 2. (1.24)

An inexact block-LU factorization is given when the Schur complements (1.24) in (1.23)
are approximated. We use an inexact block-LU factorization in Subsections 4.3.2
and 4.3.3 when inexact MSSS matrix computations are exploited on level-2 and level-3
of our scheme.

The block matrices Sj in (1.23) can be interpreted as a domain decomposition,
for instance slices of lower dimensional blocks. In a (classical) domain decomposition
algorithm, subdomains are defined Ω =

⋃
j Ωj together with appropriate interface

boundary conditions (transmission conditions) at Ωi
⋂

Ωj , i 6= j. The wave equation
in then defined per subdomain, and an iteration scheme with overlapping or non-
overlapping subdomains [34] can be defined.

For the elastic wave equation, similar ideas have been implemented in the sweeping
preconditioner [141], overlapping Schwarz methods [99], and for multifrontal meth-
ods [3, 157]. The overview paper [52] unifies numerous domain decomposition ap-
proaches for the Helmholtz equation.

1.3 Krylov Methods for Shifted Linear Systems

The efficient numerical solution of shifted linear systems,

(A− αkI)xk = b, where k = 1, ...,Nα and αk ∈ C, (1.25)

with Krylov subspace methods heavily relies on the shift-invariance property stated
in (1.26). Multi-shift variants exist for many Krylov methods, for example QMR [48],
FOM(k) [117], BiCGstab(`) [49], CG [142], MINRES [72] and, more recently devel-
oped, IDR(s) [33, 148] and QMRCGstab [90]. In Subsection 1.3.1 we exemplify how
to exploit shift-invariance in a multi-shift Krylov algorithm for GMRES(k) based on
the work by [50]. Recall the m-th Krylov subspace,

Km(A, b) = span
{
b,Ab,A2b, ...,Am−1b

}
≡ Km(A− αI,βb), (1.26)

and note the important property of shift-invariance, i.e. Krylov spaces are identical
when the matrix A is shifted by a matrix with constant diagonal entries α as long as
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the starting vectors are collinear, that is β is a scalar in (1.26). In Subsection 1.3.2, we
present an overview on recent preconditioning techniques for shifted systems that are
designed such that the shift-invariance property (1.26) is preserved after multiplication
with a preconditioner.

1.3.1 Shifted GMRES with Restarting

For the sake of numerical stability, an orthonormal basis of Km(A, b) is computed
by the Arnoldi method [117, Chapter 6.3]. A consequence of (1.26) is that this basis
only needs to be computed once for all shifted systems, and the following shifted
Hessenberg relation holds,

AVm = Vm+1Hm

⇒ (A− αI)Vm = Vm+1(Hm − αIm),

Here, the m columns of Vm ∈ CN×m form an orthonormal basis of both spaces
Km(A, r0) = Km(A − αI,βr0), and the matrix Hm ∈ Cm+1×m is upper Hessenberg.
Moreover, the matrix Im ∈ Cm+1×m denotes an m×m identity matrix with an extra
zero row attached at the bottom.

GMRES is a long-recurrence Krylov methods and, in particular, storage of Vm
can exceed memory availabilities. One way to overcome this drawback is restarting
GMRES. In order to be able to restart shifted GMRES one needs to assure that
residuals at restart are collinear. Because collinearity of the shifted residuals plays an

important role in Section 2, we present the key result of [50]. Assuming r
(k)
0 = γ

(k)
0 r0

(this can be guaranteed by choosing zero initial guess), we require after m iterations:

r(k)
m = γ(k)

m rm

b− (A− αkI)(x
(k)
0 + Vmy(k)

m ) = γ(k)
m Vm+1zm+1

r
(k)
0 − Vm+1(Hm − αkIm)y(k)

m = γ(k)
m Vm+1zm+1

γ0r0 − Vm+1(Hm − αkIm)y(k)
m = γ(k)

m Vm+1zm+1

Vm+1

(
(Hm − αkIm)y(k)

m + γ(k)
m zm+1

)
= Vm+1(γ0‖r0‖2e1)

Here, we used that the unshifted (base) system Axm = b is solved with GMRES
implying for the base residual rm = Vm+1zm+1, with zm+1 = ‖r0‖2e1 − Hmym,

cf. [50, 117]. Hence, the solution to the shifted system is x
(k)
m = Vmy

(k)
m , with y

(k)
m

obtained from the solution of the (m+ 1)× (m+ 1) system,[
(Hm − αkIm)

∣∣ zm+1

](
y

(k)
m

γ
(k)
m

)
= γ0‖r0‖2e1. (1.27)

When approximates x
(k)
m are computed via (1.27), corresponding residuals are collinear

with collinearity factor γ
(k)
m at restart. The matrix Hm − αkIm is often referred to as

shifted Hessenberg matrix.

Remark 1.11 (Existence of base system) For a given sequence of shifted matri-

ces (A−αkI), k = 1, ...,Nα, we can define Â := A−αk̂I for some index k̂ ∈ {1, ...,Nα}
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such that the sequence of shifted matrices (Â − (αk − αk̂)I) yields an equivalent se-

quence of shifted systems that requires the solution of a base system Âxk̂ = b.

1.3.2 Shift-Invariant Preconditioning Techniques

Applying a preconditioner to (1.25) that preserves shift-invariance (1.26) requires,

Km(AP−1, b) = Km((A− αI)P−1
α ,βb), (1.28)

to hold. In this section we review recent preconditioning techniques that preserve
shift-invariance and, hence, lead to a sequence of preconditioned shifted systems.

The Shift-And-Invert Preconditioner

Consider the shift-and-invert preconditioner P(τ) := (A− τI) for some τ ∈ C. Then,
we can find a scaled shift-and-invert preconditioner Pk such that,

(A− αkI)P−1
k = AP(τ)−1 − α̃kI

= A(A− τ)−1 − α̃kI
= [A− α̃k(A− τI)](A− τI)−1

=

[
A+

α̃kτ

1− α̃k
I

]
(1− α̃k)(A− τ)−1.

If we now choose,

α̃kτ

1− α̃k
= −αk ⇔ α̃k =

αk
αk − τ

, (1.29)

then the scaled shift-and-invert preconditioner,

P−1
k = (1− α̃k)(A− τI)−1 =

τ

τ − αk
(A− τI)−1, (1.30)

preserves shift-invariance in the sense of (1.28), cf. also the work of [87]. Altogether,
if we apply Pk as defined in (1.30) to a sequence of shifted systems,

(A− αkI)
τ

τ − αk
(A− τI)−1 = A(A− τI)−1 − αk

αk − τ
I, (1.31)

the right hand side of the above equation yields a sequence of preconditioned shifted
systems with newly defined shifts α̃ according to (1.29). Because of the following
equivalent formulation of (1.31),

(A− αkI)(A− τI)−1 =
τ − αk
τ

A(A− τI)−1 +
αk
τ
I,

we note that, Km
(
(A− αkI)(A− τI)−1, b

)
≡ Km

(
A(A− τI)−1, b

)
, where the right

Krylov space, again, does not depends on the shifts. The choice of τ in (1.31) yields
some freedom that we exploit in detail in Section 3.
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Multi-Preconditioning Techniques

It is also possible to apply several shift-and-invert preconditioners,

P(τj) := (A− τjI), j = 1, ..., J , (1.32)

within a flexible variant of multi-shift GMRES [59, 119]. In [119], the authors point
out that the number of preconditioners J can be significantly smaller than the number
of shifted systems Nα. When a preconditioner (1.32) that differs per iteration is
applied, additional storage for the new search space Zm is required and the following
shifted Arnoldi relation holds,

(A−αkI)Zm=:(A−αkI)
[
P(τ1)−1v1, ...,P(τm)−1vm

]
=Vm+1

(
Hm(Tm−αkIm)+Im

)
,

where Tm := diag(τ1, ..., τm) and τ1, ..., τm ∈ {τ1, ..., τJ} meaning that per GMRES
iteration the preconditioner does not necessarily differ, i.e. J � m. In a more
recent work, the authors suggest multipreconditioned multi-shift GMRES [6]. Here,
preconditioners of the form (1.32) are applied at once, such that a block search space
of the form,

Zm :=
[
Z1, ...,Zm

]
, with Zj =

[
P(τ1)−1Vj , ...,P(τJ)−1Vj

]
,

it build. The block counterpart for the shifted Arnoldi relation then yields,

(A− αkI)Zm = Vm+1 (Hm(Tm − αkIm) + Im) ,

where now Tm := blk diag(T1, ...,TJ), and Tj = diag(τ1, ..., τ1, ..., τJ , ..., τJ) ∈ CJ
j×Jj ,

and Hm being block-Hessenberg. However, growth of this flexible block search space
Zm is only linear in J as shown in [6]. Both methods fit the more general framework
of rational Krylov methods [16]. Concerning the choice of {τ1, ..., τJ} the authors give
valuable experimental insight, cf. [6, 119].

Shifted Polynomial Preconditioners

Note that the (scaled) shift-and-invert matrix Pk (1.30) is a linear polynomial in A.
In [69], the author notices that polynomials preserve shift-invariance and exploits
this fact when constructing a linear polynomial preconditioner for shifted problems.
For a general polynomial of degree n, pn(A) =

∑n
i=0 γiA

i, it is shown in [1] that
shift-invariance can be preserved in the following sense,

(A− αkI)pn,k(A) = Apn(A)− α̃kI, (1.33)

where pn,k(A) =
∑n
i=0 γi,kA

i is a polynomial preconditioner of degree n for the k-th
shifted matrix (A − αkI). In [1] formulas for the coefficients γi,k and the new shifts
α̃k such that (1.33) holds are derived. Moreover, the authors of [1] suggest to use a
Chebyshev polynomial for pn.

A well-known theoretical result is the Neumann series A−1 =
∑∞
i=0(I−A)i which

converges if the spectral radius of (I − A) is less than 1. In practice, the Neumann
preconditioner [117, Chapter 12.3] of degree n as an approximation to the inverse of A,

i.e. A−1 ≈ ∑n
i=0 (I − ξA)

i
, with free parameter ξ. In [160], the authors construct a
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truncated Neumann polynomial for each shifted matrix such that shift-invariance is
preserved. In Subsection 3.4.1, we construct a Neumann polynomial for the (fixed)
base matrix A(A− τI)−1 in (1.31) with ξ chosen such that the spectral radius mini-
mized. Based on the general framework derived in [1] shift-invariance can be preserved
in this framework as well. The insight that a polynomial preconditioner can preserve
shift-invariance in combination with the algorithm suggested by [119] triggered our
research on inner-outer multi-shift Krylov methods presented in Section 2.

Recycling and Augmented Krylov Subspace Techniques

Sequences of shifted systems (1.25) can be viewed as a special case of the more general
framework of sequences of linear systems, Akxk = b, for k = 1, ...,Nα. The work
of [29] and [93] addresses the fundamental question which subspace to reuse when
GMRES is restarted. This question becomes more difficult when sequences of linear
systems are considered and information from previous solves is reused, cf. [54, 98].
Suppose we want to recycle information from the subspace U , the approximation of
Recycled GMRES after m iterations is given by,

xm = x0 + sm + tm, with sm ∈ U and tm ∈ Km(PA, r0),

where U contains information that is recycled (from previous solves) and P is the
orthogonal projector onto (AU)⊥. In [25], harmonic Ritz vectors are suggested for U .

Recycling for sequences of shifted systems is addressed in [133]. A main result
of [133] is the proof that projectors P preserve shift-invariance in the following situ-
ation,

Km(PA, v) = Km(P (A− αI), v) iff. v ∈ (AU)⊥. (1.34)

Moreover, the author describes a procedure to compute a shifted augmented sub-
space U (k) such that,

AU = (A− αkI)U (k),

holds, and the same projector can be used in (1.34). This requires additional storage,
and an approach with fixed memory is discussed in [133] as well. A block-version is
discussed in [132], and, recently, an approach with general preconditioner applied to
flexible multi-shifted GMRES [131] destroying shift-invariance (1.28) is presented.

1.4 Areas of Application: Frequency-Domain Full-
Waveform Inversion

We want to briefly point the reader to a prominent field of application where the fast
solution of the time-harmonic elastic wave equation at multiple frequencies is required.
In seismic exploration, full-waveform inversion (FWI) is a computational approach to
understand the structure of the earth subsurface. Therefore, reflected shock waves
are measured (see Figure 1.1) and matched with simulation results in a least-squares
sense, cf. the overview paper [153] and the references therein; and [94, 106] for
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frequency-domain FWI. From a mathematical point-of-view, let Nω > 1 and consider
the PDE-constrained optimization problem,

min
ρ,cp,cs

Nω∑
k=1

‖ûk(ρ, cp, cs)−F(dk)‖ (1.35)

subject to E(ûk) = 0 for all k. (1.36)

Here, E(·) denotes the elastic wave equation in frequency-domain as described in
Section 1.1 after spatial discretization and Fourier transform, i.e.,

E(ûk) := (K + iωkC − ω2
kM)ûk − ŝ.

The misfit function (objective function) (1.35) can differ for different FWI approaches
and dk denotes the measured reflection intensity for shock waves of frequency ωk (in
space-time). In particular, Parseval’s identity allows to formulate (1.35) equivalently
in time or frequency domain (see remark in Definition 1.2). Including multiple fre-
quencies in the objective function (1.35) improves the problem statement, cf. [94].
The optimization problem (1.35)-(1.36) can be solved iteratively and typically requires
the solution of the forward problem (1.36) at every iteration, cf. [91, 139].

1.5 Structure of this Thesis

This thesis concerns the efficient numerical solution of the time-harmonic elastic wave
equation at multiple frequencies, hence, the forward problem in (1.35)-(1.36). In this
work, the following main research questions are addressed:

1. Can we develop an efficient Krylov methods for the fast iterative solution of the
elastic wave equation that works well for a (wide) range of frequencies?

2. Can we find a single preconditioner that can be applied efficiently and, at the
same time, improves convergence of all linear systems that arise from different
frequencies?

3. Can we implement an algorithm that exploits state-of-the-art matrix computa-
tions such that this preconditioner is efficient with respect to memory consump-
tions and computation costs?

The thesis is based to a large extend on the author’s journal publications [8, 9, 10,
13]. The articles have been adapted in notation and partly extended. This thesis is
structured as follows.

Chapter 2

In Chapter 2 we develop an efficient nested Krylov method for the simultaneous
iterative solution of shifted linear systems. Therefore, the reformulation stated in
Problem 1.6 is used. When solving shifted systems (1.25) with a nested method,
it is particularly challenging to preserve the shift-invariance property (1.26). The
framework that we have developed uses an inner multi-shift Krylov methods as a pre-
conditioner for an outer, flexible multi-shift Krylov method. When the inner method
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yields collinear residuals, shift-invariance can be preserved after preconditioning in
the sense of (1.28). In order to be able to use multi-shift IDR(s) as an inner method,
we have developed a new IDR variant that guarantees collinear residuals. The inner-
outer scheme avoids long recurrences by design which is demonstrated by numerical
examples. This chapter is based on our publication [8].

Chapter 3

Chapter 3 is based on our work [9] and provides theoretical insight for the shift-and-
invert preconditioner (1.30) when applied as a right preconditioner within multi-shift
GMRES. We derive an analytic expression for the parameter τ in (1.31) that is optimal
with respect to a convergence bound of multi-shift GMRES. Our spectral analysis is
exploited as a second-level polynomial preconditioner for the multi-shift Problem 1.6
and as a spectral rotation in a matrix equation approach for Problem 1.8. Numerical
experiments demonstrate the optimality of the newly derived optimal seed parameter
in terms of GMRES iteration numbers.

Chapter 4

Chapter 4 addresses the fast implementation of the shift-and-invert preconditioner in a
multi-frequency framework. Therefore, we use state-of-the-art multilevel sequentially
semiseparable (MSSS) matrix computation that exploit the structure of the discretized
elastic operator that stems from a Cartesian grid. We present an inexact block-LU
factorization for 2D and 3D elastic problems based on our publication [13]. On the
lowest level, inexact computations are performed that limit the grows of the off-
diagonal rank. On higher levels, we exploit approximate Schur complements, and
domain decomposition approaches, cf. Subsection 1.2.3. As a multi-frequency solver,
our work [13] focuses on global IDR(s) for matrix equations, i.e. Problem 1.8.

Chapter 5

An extensive comparison study of the shifted systems approach (Problem 1.6) and
the matrix equation reformulation (Problem 1.8) is presented in Chapter 5 and [10].
Our numerical experiments provide guidelines concerning the suitability of both ap-
proaches for multi-frequency wave propagation problems. In order to obtain an al-
gorithm for the shift-and-invert preconditioner in 3D with linear computational com-
plexity, we present recent improvements to [10] by means of a coarse grid correction
in the newly added Section 5.3.



Chapter 2
Nested Krylov Methods for Shifted
Linear Systems

Abstract. We consider Krylov subspace methods that are designed for sequences

of shifted linear systems. For the efficient numerical solution of shifted problems,

the shift-invariance property of the corresponding Krylov subspaces is used such

that a Krylov basis is computed only once for all shifted systems. Precondition-

ers in general destroy this shift-invariance property. Known preconditioners that

preserve the shift-invariance are the shift-and-invert preconditioner as well as poly-

nomial preconditioners. In this work, we introduce a new approach to the precon-

ditioning of multi-shift Krylov methods. In our new nested framework, we use an

inner multi-shift Krylov method as a flexible preconditioner within an outer multi-

shift Krylov method. In order to preserve the shift-invariance of the underlying

Krylov subspaces, we require collinear residuals for the inner Krylov method. This

new approach has been implemented for two possible combinations, namely FOM-

FGMRES and IDR-FQMRIDR, and has been tested to various numerical examples

arising from geophysical applications.

Introduction

We consider shifted linear systems with equal right-hand side of the form

(A− σkI)xk = b, k = 1, ...,Nσ, (2.1)

This chapter is based on the journal article:

M. Baumann and M.B. van Gijzen (2015). Nested Krylov methods for shifted linear systems.
SIAM Journal of Scientific Computing, 37(5), S90–S112.

21
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where the dimensions are A ∈ CN×N , xk ∈ CN , b ∈ CN and Nσ denotes the number
of distinct shifts σk ∈ C. For simplicity, we will often write

(A− σI)x(σ) = b, σ ∈ C, (2.2)

keeping in mind that we aim to solve (2.2) for a sequence of many shifts σ and that
quantities with a superscript belong to the respective shifted system, i.e. x(σ) is the
solution of the linear system with system matrix (A− σI) and right-hand side b.

For an early overview on the numerical solution of shifted linear systems using
Krylov methods we refer to [69, 127]. Multi-shift variants exist for many Krylov
methods, for example QMR [48], GMRES(k) [50], FOM(k) [124], BiCGstab(`) [49],
CG [142], MINRES [72] and, more recently developed, IDR(s) [33, 148] and QMR-
CGstab [90].

A known preconditioning technique for shifted linear systems is the so-called shift-
and-invert preconditioner of the form (A − τI) where the seed shift τ ∈ C has to be
chosen carefully. This preconditioner has been applied to shifted Helmholtz problems
for example in [44]. Since the shift-and-invert matrix has to be solved by a direct
method, this approach can be computationally costly. This can be overcome by
either a multigrid approach [45, 121] or by an approximation of the shift-and-invert
preconditioner using a polynomial preconditioner as shown in [1]. Most recently,
multiple shift-and-invert preconditioners have been combined in a flexible Krylov
method in order to capture a wider range of shifts σ1, ...,σNσ , cf. [59, 119]. Our article
is motivated by the question of whether we can use a Krylov method as a polynomial
preconditioner within a flexible method. We will present two new algorithms that are
both nested Krylov methods in the sense that an inner, collinear Krylov method is
used as a (polynomial) preconditioner to solve shifted linear systems within a flexible
outer Krylov iteration.

Our article is organized as follows: In Section 2.1, we review the multi-shift
GMRES [50] and the multi-shift QMRIDR [148] algorithms without precondition-
ing. The flexible versions of both are used as an outer Krylov method for the new
nested framework in Section 2.4 and 2.5, respectively. As for the inner, collinear
Krylov method, we present the multi-shift FOM algorithm [124] that automatically
leads to collinear residuals in Section 2.3.1. In order to use IDR(s) as an inner method,
we present a new collinear variant in Section 2.3.2. The article concludes with various
numerical tests in Section 2.6.

2.1 Review of Two Multi-Shift Krylov Algorithms

The main property that is used in Krylov subspace methods for shifted linear systems,
is the shift-invariance of the Krylov subspaces that are generated by the matrix A
and the shifted matrix (A− σI) when the same right-hand side b is used, i.e.

Km(A, b) ≡ span{b,Ab, ...,Am−1b} = Km(A− σI, b) ∀σ ∈ C. (2.3)

The immediate consequence of this invariance-property is that a basis for the un-
derlying Krylov spaces only has to be built once for all shifted systems. Note that
relation (2.3) also holds for collinear starting vectors but, in general, different right-
hand sides in (2.1) destroy the shift-invariance.
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Multi-Shift GMRES

The well-known GMRES method [118] can be adapted to shifted systems in a straight-
forward way. In [50], a restarted version of multi-shift GMRES has been developed
that relies on collinear residuals at restart. In this section, we review the main ideas
of [50] and point out how the shift-invariance property (2.3) is used in the algorithm
in order to speed-up the computational performance when solving shifted systems
numerically.

In the classical GMRES method for the unshifted system Ax = b, an orthogonal
basis of the m-th Krylov subspace is obtained by the Arnoldi method. This leads to
the well-known Hessenberg relation [138, eqn. 33.3],

AVm = Vm+1Hm, (2.4)

where the columns of Vm ∈ CN×m span an orthonormal basis of Km(A, b), and
Hm ∈ C(m+1)×m is the respective Hessenberg matrix with entries hij that are uniquely
determined by the Arnoldi iteration. Then, in classical GMRES, an approximation
to the solution of Ax = b in the m-th iteration is given by

xm = Vmym, where ym = argmin
y∈Cm

‖Hmy − ‖b‖e1‖, (2.5)

with e1 being the first unit vector of Cm+1, and x0 = 0. For simplicity, we will assume
the initial guess to be equal to zero throughout the whole document. The optimization
problem in (2.5) can be solved efficiently due to the Hessenberg structure of Hm using
for instance Givens rotations, cf. [57, Section 5.1.8]. Clearly, we see from (2.5)
that xm ∈ Km(A, b).

Because of the shift-invariance property (2.3), the matrix Vm which spans the m-th
Krylov subspace can be re-used for any shift σ. Therefore, the Arnoldi iteration in
multi-shift GMRES only needs to be performed once, and from the shifted Hessenberg
relation,

(A− σI)Vm = Vm+1(Hm − σIm),

we can derive an approximated solution to the shifted problem (2.2) via,

x(σ)
m = Vmy(σ)

m , where y(σ)
m = argmin

y∈Cm
‖(Hm − σIm)y − ‖b‖e1‖, (2.6)

where Im is the identity matrix of size m ×m with an extra zero row appended at
the bottom. We note that the matrix Hm(σ) ≡ Hm − σIm for the shifted system is of
Hessenberg structure as well. Clearly, we get the original Hessenberg matrix of the
unshifted problem back if σ = 0, i.e. Hm(0) = Hm.

By comparing (2.5) and (2.6), we note that the m-th iterate lies in both cases
in the column space of the matrix Vm and, therefore, lies in the same Krylov sub-
space Km(A, b). Moreover, we note from the derivation of the shifted Hessenberg
matrix Hm(σ) that the shift of the matrix A directly translates into a shift of the
Hessenberg matrix.

In order to allow restarting for multi-shift GMRES, the authors of [50] require
collinear residuals in order to preserve shift-invariance of the respective Krylov spaces
after restart, cf. [50, Algorithm 2.4]. A numerically more robust implementation of
restarted multi-shift GMRES has recently been proposed in [160].
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Multi-Shift QMRIDR

The QMRIDR method presented in [148] is a variant of the Induced Dimension Re-
duction (IDR) method [130] that makes use of a so-called generalized Hessenberg
decomposition and determines the m-th iterate via a quasi-minimization of the m-th
residual. In [60, 148], the following relation is derived,

AGmUm = Gm+1Hm, (2.7)

where Um ∈ Cm×m is upper triangular, Hm ∈ C(m+1)×m is of Hessenberg form, and
s + 1 consecutive vectors in Gm belong to the nested Sonneveld spaces G0, ...,Gj .
The entries of Um,Gm and Hm are uniquely determined by the specific IDR algo-
rithm [130, 146], cf. [60] for a detailed derivation. Based on the generalized Hessen-
berg decomposition (2.7), a multi-shift IDR method, the QMRIDR(s) algorithm, has
been derived [148].

The approach of QMRIDR(s) is very similar to the GMRES approach. Therefore,
the m-th iterate is constructed as a linear combination of the columns of Gm by
putting xm = GmUmym, with a coefficient vector ym ∈ Cm that is determined via a
least-squares problem that involves the Hessenberg matrix Hm only. Altogether, the
following minimization problem needs to be solved,

xm = GmUmym, where ym = argmin
y∈Cm

‖Hmy − ‖b‖e1‖, (2.8)

which is called ’quasi-minimization’ of the m-th residual because the matrix Gm does
not have orthogonal columns, cf. [148].

For shifted linear systems of the form (2.2), a very similar relation holds,

x(σ)
m = GmUmy(σ)

m , where y(σ)
m = argmin

y∈Cm
‖(Hm − σUm)y − ‖b‖e1‖, (2.9)

and by comparing (2.8) with (2.9), we note that the approximate solutions to the
respective systems lie in the same subspace and the matrix Hm(σ) ≡ Hm − σUm is
again of Hessenberg structure since Um consists of the upper triangular matrix Um
derived in [148] with an extra zero row appended.

From the derivations of multi-shift GMRES in Section 2.1 and of multi-shift QM-
RIDR in this section, we note that in both cases the efficient computation of the
Hessenberg matrix of the shifted system Hm(σ) is crucial for the design of the algo-
rithm. Therefore, we will put emphasis on the computation of Hm(σ) as a function
of Hm in the nested Krylov framework in Section 2.4 and Section 2.5 as well.

2.2 A Prototype Inner-Outer Krylov Method for
Shifted Problems

This section is structured as follows: We will first point out the requirements of a single
preconditioner for shifted linear systems that preserves the shift-invariance property
of the Krylov subspaces in (2.3). In this work, we restrict ourselves to such types
of preconditioners that preserve the shift-invariance, but we would like to mention
the promising approaches of [15, 131, 133] which do not rely on shift-invariance after
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preconditioning. Based on the requirements of a single preconditioner that preserves
shift-invariance, we design a flexible preconditioner in Subsection 2.2.2 that requires
collinear residuals for the inner iteration. In Subsection 2.3, we present two Krylov
methods that lead to collinear residuals; namely the FOM method that produces
collinear residuals automatically and a new variant of the IDR(s) method where some
modifications are necessary in order to obtain collinear residuals. Both methods
are used as preconditioners in a flexible Krylov method in Subsection 2.4 and 2.5,
respectively.

2.2.1 The Single Shift-And-Invert Preconditioner

In order to precondition a shifted linear system (2.2) without destroying the shift-
invariance property of the respective Krylov spaces, we require the following equality
after preconditioning,

Km((A− σI)P(σ)−1, b) = Km(AP−1, b), (2.10)

where P(σ) is a different preconditioner for every considered shifted system, and P
is a preconditioner for the unshifted system Ax = b, cf. [1, 69]. Relation (2.10) is
satisfied if we find a parameter η that depends on the shift σ and a constant matrix P
such that,

(A− σI)P(σ)−1 = AP−1 − η(σ)I, (2.11)

which in fact means that we can write the preconditioned shifted systems as shifted
preconditioned systems with new shifts η(σ). From [87, 88, 125], it is well-known that
the so-called shift-and-invert preconditioner P ≡ (A− τI) applied to (2.11) leads to:

(A− σI)P(σ)−1 = A(A− τI)−1 − η(σ)I

= (1− η(σ))(A+
τη(σ)

1− η(σ)︸ ︷︷ ︸
≡−σ

I)(A− τI)−1.

By choosing η(σ) in an appropriate way, we can factor out the term (A−σI) on both
sides which yields the following formulas:

η(σ) =
σ

σ − τ , P(σ) =
1

1− η(σ)
P =

τ − σ
τ
P,

where the dependence of P(σ) on the shift becomes explicit. Therefore, only the seed
shift τ has to be chosen and in order to invert P(σ) we only need to decompose P.
However, the one-time decomposition of P can numerically be very costly and the
suitable choice of the seed shift τ is difficult for a large range of shifts σ1, ...,σNσ , as
has been pointed out in [119]. In [1, 160], polynomial preconditioners are suggested
that cheaply approximate P−1. Note that the right-hand side in (2.11) defines a new
shifted problem for which reason the single shift-and-invert preconditioner can be
applied as a first layer in a our later algorithm.

We remark that also in the more general case of shifted problems (A− σB) with
a mass matrix B 6= I, the shift-and-invert preconditioner P = A − τB can be used.
Applying this preconditioner yields a sequence of preconditioned shifted systems with
a shifted identity in the same way as in the right-hand side of (2.11), cf. [87].



26 Nested Krylov Methods for Shifted Linear Systems Chapter 2

2.2.2 Flexible Preconditioning for Shifted Linear Systems

Flexible preconditioning of an iterative Krylov subspace method means that a different
preconditioner can be used in every iteration j, see [115] where flexible GMRES
(FGMRES) has been introduced for preconditioning systems of the form Ax = b. For
flexible preconditioning of shifted linear systems, we require a very similar relation
to (2.11), namely,

(A− σI)Pj(σ)−1 = αj(σ)AP−1
j − βj(σ)I, (2.12)

where the parameters αj and βj will depend on the shift, and different precondition-
ers Pj and Pj(σ) are used in every iteration j. Note that the right-hand side in (2.12)
is a shifted coefficient matrix and, thus, the shift-invariance is preserved by the flexible
preconditioner. Since in a practical algorithm, the preconditioner is always directly
applied to a vector vj , equation (2.12) translates into:

(A− σI)Pj(σ)−1vj = αj(σ)AP−1
j vj − βj(σ)vj . (2.13)

We will next determine how αj and βj have to be chosen such that (2.12) and (2.13)
hold. Therefore, we assume the preconditioning to be done by a multi-shift Krylov
method itself (the inner method) which means that

zj = P−1
j vj , z

(σ)
j = Pj(σ)−1vj ,

are computed via a truncated multi-shift Krylov method at step j. More precisely, the

vectors zj and z
(σ)
j denote the approximate (truncated) solution of the linear systems

with system matrix A and (A−σI), respectively, and same right-hand side vj . Hence,
the corresponding (inner) residuals are given by,

rj = vj −Azj = vj −AP−1
j vj , (2.14)

r
(σ)
j = vj − (A− σI)z

(σ)
j = vj − (A− σI)Pj(σ)−1vj . (2.15)

We require the residuals (2.14)-(2.15) of the inner method to be collinear, i.e.

∃γ(σ)
j ∈ C : r

(σ)
j = γ

(σ)
j rj . (2.16)

Note that the collinearity factor γ
(σ)
j will be different at every iteration j and for every

shift σ. Moreover, relation (2.16) is not a very strong assumption since for example
multi-shift FOM [124], multi-shift BiCGstab [49], restarted multi-shift GMRES [50]
and multi-shift IDR [33, 74] yield collinear residuals. With this assumption, αj and βj
can be determined from (2.13) by using the collinearity relation (2.16) as the following
calculation shows:

(A− σI)z
(σ)
j = αjAzj − βjvj

⇔ vj − (A− σI)z
(σ)
j = αjvj − αjAzj + (1− αj + βj)vj

⇔ r
(σ)
j = αj︸︷︷︸

!
=γ

(σ)
j

rj + (1− αj + βj)︸ ︷︷ ︸
!
=0

vj
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Thus, with (2.13) the residuals are collinear if we choose

αj = γ
(σ)
j , βj = αj − 1 = γ

(σ)
j − 1

in every (outer) iteration 1 ≤ j ≤ m. We show the following relation,

(A− σI)z
(σ)
j = γ

(σ)
j Azj −

(
γ

(σ)
j − 1

)
vj , (2.17)

or, in terms of the flexible preconditioners Pj and Pj(σ), the following holds:

(A− σI)Pj(σ)−1vj =
(
γ

(σ)
j AP−1

j −
(
γ

(σ)
j − 1

)
I
)

vj , 1 ≤ j ≤ m.

Note that the factors αj and βj do depend on σ since the collinearity factors γ
(σ)
j are

different for every shift.

2.3 Shifted Krylov Methods with Collinear Resid-
uals

In the previous section, we have derived the theoretical basis for a nested Krylov
method for shifted linear systems. In order to be able to design a preconditioner
that preserves the shift-invariance of the corresponding Krylov spaces, we assumed
collinear residuals (2.16) for the inner multi-shift method. Next, we will present
two multi-shift Krylov methods that lead to collinear residuals and, therefore, fulfill
assumption (2.16). It is well-known from [124] that the multi-shift version of the
Full Orthogonalization Method (FOM) leads to collinear residuals. We will review
this result in Subsection 2.3.1. Moreover, we describe a new variant of the Induced
Dimension Reduction (IDR) method that has collinear residuals in Subsection 2.3.2.

2.3.1 Collinear Residuals in Multi-Shift FOM

The multi-shift FOM method (msFOM) can be derived very similarly to the multi-shift
GMRES method in Section 2.1, cf. [124]. In FOM, an orthogonal basis of Km(A, b)
is obtained via the Arnoldi iteration which yields,

V H
mAVm = Hm,

and can be derived from (2.4) by left-multiplication with V H
m , where Hm is a square

matrix and the superscript H denotes Hermitian transpose. Assuming Hm is invert-
ible, the m-th iterate is then obtained by

xm = Vmym, where ym = H−1
m (βe1),

where, for simplicity, we assumed x0 = 0 as an initial guess, and β ≡ ‖r0‖ = ‖b‖.
Similarly to multi-shift GMRES, the shifted Hessenberg matrix in msFOM can be de-
rived as Hm(σ) = Hm − σIm, see [124]. The complete multi-shift FOM algorithm
is repeated in Algorithm 2.1. It is well-known that the msFOM method as presented
in Algorithm 2.1 leads to collinear residuals of the shifted system and the original
(σ = 0) system. We repeat this result in the following Lemma.
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Algorithm 2.1 msFOM for (A− σkI)xk = b, k = 1, ...,Nσ, [124]

1: Initialize r0 = b, β = ‖r0‖, v1 = r0/β . Initialization with x0 = 0
2: for j = 1 to m do
3: Compute w = Avj
4: for i = 1 to j do . Arnoldi method
5: hi,j = wHvi
6: w = w − hi,jvi
7: end for
8: Set hj+1,j = ‖w‖ and vj+1 = w/hj+1,j

9: end for
10: Solve ym = H−1

m (βe1) . The unshifted case
11: Set xm = Vmym
12: for k = 1 to Nσ do . Loop over shifts
13: Construct Hm(σk) = Hm − σkIm . Form shifted Hessenberg matrices

14: Solve y
(σk)
m = Hm(σk)−1(βe1)

15: Set x
(σk)
m = Vmy

(σk)
m . Note that x

(σk)
m ∈ Km(A, b) for all σk

16: end for

Lemma 2.1 (Collinearity of the residuals in Algorithm 2.1) We use the no-
tation of Algorithm 2.1. Let the respective residuals of the original and the shifted
system after m steps be

rm ≡ b−Axm,

r(σ)
m ≡ b− (A− σI)x(σ)

m .

Then there exists a scalar γ(σ) that depends on the number of performed msFOM iter-
ations m, and the shift σ such that residuals are collinear, i.e.,

r(σ)
m = γ(σ)rm.

Proof 2.2 This proof can be found in [117, Proposition 6.7] as well as in [124].
For the residual of the original system after m iterations of FOM (lines 1–11 in
Algorithm 2.1), it holds,

rm = b−Axm = b−AVmym = r0 −AVmym

= βv1 − VmHmym︸ ︷︷ ︸
=0

−hm+1,meH
mymvm+1 = −hm+1,meH

mymvm+1.

Here, the first two terms cancel due to the imposed Galerkin condition in FOM, i.e.
rm ⊥ Km(A, b) ⇔ V H

mrm = 0. Repeating the same calculation for the shifted system
yields,

r(σ)
m = −h(σ)

m+1,meH
my(σ)

m vm+1,

with em ≡ [0, ..., 0, 1]H ∈ Cm, and the Arnoldi vector vm+1 is identical to the unshifted
case. Since the off-diagonal elements of the shifted Hessenberg matrix are identical to
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the unshifted Hessenberg matrix in Algorithm 2.1, and the orthogonal basis vectors vi
obtained by the Arnoldi iteration are identical, we conclude,

γ(σ) = y(σ)
m /ym, (2.18)

with ym, y
(σ)
m being the last entry of the vectors ym, y

(σ)
m , respectively. The residuals

are collinear with the collinearity factor γ(σ) explicitly given by (2.18). �

The above lemma shows that msFOM is suitable as a preconditioner for the nested

framework derived in Section 2.2.2. The required collinearity factor γ
(σ)
j of the j-th

outer iteration in (2.17) is given by (2.18), where we assume that msFOM is stopped
after m inner iterations

2.3.2 A New Variant of Multi-Shift IDR(s) with Collinear
Residuals

The IDR(s) method as presented in [130] is a Krylov subspace method that is based
on the idea that the residual is forced to lie in spaces Gj of shrinking dimensions as
the number of iterations increases. In more detail, we require the residual rn+1 to
fulfill,

Gj+1 3 rn+1 = (I − ωj+1A)vn, with vn ∈ Gj ∩ S, ωj+1 ∈ C \ {0}, (2.19)

with G0 ≡ KN (A, b), and, without loss of generality, let S = N (PH) be the null
space of some N × s matrix P = [p1, ..., ps]. It is known from the IDR theorem [130,
Theorem 2.1] that the spaces Gj that are generated via the recursive definition (2.19)
are of decreasing dimension and that, eventually, Gj = {0} for some j ≤ N . This
result guarantees that in exact arithmetic the residual will be equal to zero at some
point. Moreover, note that the scalars ωj+1 in (2.19) can be chosen freely, which
we will exploit in the following in order to derive a collinear variant of the IDR(s)
method.

According to [130], the vectors vn ∈ Gj ∩S can be computed in the following way,

(PH∆Rn)c = PHrn, (2.20)

vn = rn −∆Rnc, (2.21)

with ∆Rn ≡ [∆rn−1, ..., ∆rn−s], and residual difference ∆rn−1 ≡ rn − rn−1. In a
similar way, we denote the matrix of the last s + 1 residuals by Rn ≡ [rn, ..., rn−s].
From the last two definitions, we note that the residual updates can be expressed as
a product of the actual residuals and a difference matrix D in the following way,

[rn,−∆Rn] = RnD, (2.22)

where D is defined as the invertible matrix:

D ≡


1 −1

. . .
. . .

. . . −1
1

 ∈ C(s+1)×(s+1).

Note that (2.22) holds in the same way for residuals of the shifted systems.
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A first approach to adapt the IDR method to shifted linear systems that leads
to collinear residuals has been done by [74]. The algorithm presented in [74] follows
the classical approach of evaluating the shifted residual polynomial. For the collinear
IDR-variant presented in this section, we derive a purely algebraic approach that ex-
ploits the IDR theorem and an implementation of the shifted algorithm that is very
closely related to the first IDR version in [130]. After finishing this manuscript, we
discovered that the same approach but a different implementation of it was indepen-
dently followed by [33].

We first note that collinear residuals rn+1 and r
(σ)
n+1 will lie in the same Sonneveld

spaces. We therefore aim to construct the spaces Gj only once for all shifted systems.

Moreover, we express the collinearity via a diagonal matrix Γ̃
(σ)
n ≡ diag(γ

(σ)
n , ..., γ

(σ)
n−s)

that consists of the last s+ 1 consecutive collinearity factors such that it holds,

R(σ)
n = RnΓ̃(σ)

n , (2.23)

where R
(σ)
n ≡ [r

(σ)
n , ..., r

(σ)
n−s] is constructed in the same way as Rn.

Our approach can be described in two phases: First, we note from (2.19), that in

order to obtain collinear residuals, we need to produce collinear vectors vn and v
(σ)
n .

Therefore, we want to calculate the intermediate vector c(σ) in (2.20) of the shifted

systems such that v
(σ)
n = α(σ)vn, with α(σ) ∈ C to be determined. In the following

calculation, we make use of (2.22) and (2.23) in order to manipulate relation (2.21)
for the shifted system:

α(σ)vn = v(σ)
n = r(σ)

n −∆R(σ)
n c(σ) = [r(σ)

n ,−∆R(σ)
n ]

[
1

c(σ)

]
= R(σ)

n D

[
1

c(σ)

]
= RnΓ̃(σ)

n D

[
1

c(σ)

]
= [rn,−∆Rn]D−1Γ̃(σ)

n D

[
1

c(σ)

]
.

By comparing with (2.21), we obtain the following (s+1)×(s+1) system of equations,

D−1Γ̃(σ)
n D

[
1

c(σ)

]
= α(σ)

[
1
c

]
, (2.24)

where the vector c is known, and c(σ) ∈ Cs and α(σ) ∈ C can be uniquely determined.

Note that in contrast to (2.20)-(2.21), we have computed c(σ) and v
(σ)
n = α(σ)vn of

the shifted systems without storing additional residual differences. In the second step

of our approach, we determine the free IDR parameter ω
(σ)
j+1 and the factor γ(σ) such

that the residuals are collinear, i.e.

r
(σ)
n+1 = γ(σ) · rn+1. (2.25)
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Algorithm 2.2 coll IDR(s) for (A− σkI)xk = b, k = 1, ...,Nσ

1: Set x0 = x
(σk)
0 = 0, r0 = b, and γ

(σk)
0 = 1

2: for n = 0, ..., s− 1 do . Initialization phase
3: v = Arn; ω = (vHrn)/(vHv)
4: ∆xn = ωrn; ∆rn = −ωv
5: for k = 1, ...,Nσ do

6: γ
(σk)
n+1 = γ

(σk)
n /(1− ωσk) . Collinearity factors, cf. (2.26)

7: ω(σk) = ω/(1− ωσk) . Choice for IDR parameter, cf. (2.26)

8: ∆x
(σk)
n = ω(σk)γ

(σk)
n rn

9: x
(σk)
n+1 = x

(σk)
n + ∆x

(σk)
n

10: end for
11: Update: xn+1 = xn + ∆xn; rn+1 = rn + ∆rn
12: end for
13: ∆Rn+1 := (∆rn, ..., ∆r0); ∆Xn+1 := (∆xn, ..., ∆x0)

14: ∆X
(σk)
n+1 := (∆x

(σk)
n , ..., ∆x

(σk)
0 ); γ(σk) := (γ

(σk)
n+1 , ..., γ

(σk)
0 )

15: n = s
16: while ‖rn‖ > TOL and n < MAXIT do
17: for j = 0, ..., s do
18: Solve c from PH∆Rnc = PHrn
19: v = rn −∆Rnc
20: for k = 1, ...,Nσ do . Loop over shifts

21: Set Γ̃
(σk)
n := diag(γ(σk))

22: Solve [1, c(σk)] from D−1Γ̃
(σk)
n D[1, c(σk)] = α(σk)[1, c]

. The solve in line 22 implies v(σk) = α(σk)v acc. to (2.24)
23: end for
24: if j == 0 then
25: t = Av
26: ω = (tHv)/(tHt); ω(σk) = ω/(1− ωσk) . IDR parameter, cf. (2.26)
27: ∆xn = −∆Xnc + ωv; ∆rn = −∆Rnc− ωt
28: else
29: ∆xn = −∆Xnc + ωv; ∆rn = −A∆xn
30: end if
31: Update: xn+1 = xn + ∆xn; rn+1 = rn + ∆rn
32: for k = 1, ...,Nσ do . Loop over shifts

33: γ
(σk)
n+1 = α(σk)/(1− ωσk) . Collinearity factors, cf. (2.26)

34: ∆x
(σk)
n = −∆X

(σk)
n c(σk) + ω(σk)α(σk)v

35: x
(σk)
n+1 = x

(σk)
n + ∆x

(σk)
n

36: end for
37: // The IDR-update:
38: n = n+ 1
39: ∆Rn := (∆rn−1, ..., ∆rn−s); ∆Xn := (∆xn−1, ..., ∆xn−s)

40: ∆X
(σk)
n := (∆x

(σk)
n−1, ..., ∆x

(σk)
n−s); γ

(σk) := (γ
(σk)
n , ..., γ

(σk)
n−s )

41: end for
42: end while
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Therefore, we substitute the definition of the residuals from (2.19) and use the

collinearity of the vectors vn and v
(σ)
n :

r
(σ)
n+1 = γ(σ)rn+1

⇔
(
I − ω(σ)

j+1(A− σI)
)
α(σ)vn = γ(σ) ((I − ωj+1A)vn)

⇔
(

1 + ω
(σ)
j+1σ

)
α(σ)vn − ω(σ)

j+1α
(σ)Avn = γ(σ)vn − γ(σ)ωj+1Avn.

By matching the coefficients of the terms that belong to vn and Avn, respectively,
we obtain,

α(σ) + ω
(σ)
j+1σα

(σ) = γ(σ), ω
(σ)
j+1α

(σ) = γ(σ)ωj+1,

where γ(σ) and ω
(σ)
j+1 can be calculated as:

ω
(σ)
j+1 =

ωj+1

1− ωj+1σ
, γ(σ) =

α(σ)

1− ωj+1σ
. (2.26)

Thus, we have derived a formula for the collinearity factor γ(σ) which can be used in
the nested framework in (2.17). In Algorithm 2.2, we present the collinear IDR variant

(called coll IDR(s)) using (2.26) for the choice of the free IDR parameter ω
(σ)
j+1. Note

that in (2.26) the explicit dependence of the collinearity factor on the shift becomes
obvious.

Since in Algorithm 2.2 we loop over Nσ distinct shifts, all shifted quantities are
labeled with a superscript that depends on this loop index k. Concerning the choice of
the s-dimensional shadow space S and the parameter ωj+1 of the unshifted system,
we refer to Section 4.1 and 4.2 of [130], respectively. As mentioned already, the
implementation of Algorithm 2.2 does not require the storage of residual differences
for the shifted systems. However, we need to additionally store s updates for the
iterates.

2.4 Nested FOM-FGMRES for Shifted Linear Sys-
tems

We now present a special case of the nested Krylov framework of Section 2.2.2, namely
a version where multi-shift FOM (msFOM) is used as inner preconditioner and flexible
GMRES (FGMRES) is used as an outer Krylov iteration. Flexible GMRES has been
introduced in [115] for unshifted systems Ax = b and allows a different precondi-
tioner Pj in the j-th outer iteration. The Hessenberg relation (2.4) therein extends
to,

AZm = Vm+1Hm, (A− σI)Z(σ)
m = Vm+1Hm(σ), (2.27)

where at step 1 ≤ j ≤ m the (flexible) preconditioning zj ≡ P−1
j vj , z

(σ)
j ≡ Pj(σ)−1vj

is carried out, and Zm ≡ [z1, ..., zm] and Z
(σ)
m ≡ [z

(σ)
1 , ..., z

(σ)
m ], respectively. Note
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that (2.27) is formulated for both, the shifted and unshifted case, and that one column
of relation (2.27) yields,

Azj = Vm+1hj , (A− σI)z
(σ)
j = Vm+1h

(σ)
j ,

which we will use next in order to determine the shifted Hessenberg matrix Hm(σ)
columnwise. To this end, we assume that the preconditioner Pj(σ) is equivalent to a

truncated msFOM inner iteration with collinear factors γ
(σ)
j for the residuals according

to (2.18). From the following calculation

(A− σI)Pj(σ)−1vj = Vm+1h
(σ)
j

⇔ γ
(σ)
j Azj −

(
γ

(σ)
j − 1

)
vj = Vm+1h

(σ)
j

⇔ γ
(σ)
j Vm+1hj − Vm+1

(
γ

(σ)
j − 1

)
ej = Vm+1h

(σ)
j

⇔ Vm+1

(
γ

(σ)
j hj −

(
γ

(σ)
j − 1

)
ej

)
= Vm+1h

(σ)
j

we can conclude the j-th column of the shifted Hessenberg matrix to be,

h
(σ)
j = γ

(σ)
j hj −

(
γ

(σ)
j − 1

)
ej , 1 ≤ j ≤ m, (2.28)

with ej being the j-th unit vector of Cm+1.
Aligning the columns of m outer iterations together, yields the following formula

for the shifted Hessenberg matrix,

Hm(σ) = (Hm − Im) Γ(σ)
m + Im, (2.29)

where Im is the m×m identity matrix with an extra row of zeros attached and Γ
(σ)
m

is a diagonal matrix with the collinearity factors on the diagonal, i.e.

Γ(σ)
m ≡


γ

(σ)
1

. . .

γ
(σ)
m

 ∈ Cm×m. (2.30)

We use this notation in order to point out the similarities to the nested algorithm in
Section 2.5. Note that for σ = 0, the shifted Hessenberg matrix (2.29) reduces to the
original Hessenberg matrix, Hm(0) = Hm, because in this case the collinearity factors

are all equal to one and, hence, Γ
(0)
m = I. The FOM-FGMRES nested Krylov method

for shifted linear systems is summarized in Algorithm 2.3.
The least-squares problem in line 15 minimizes the residual of each shifted system

as the following calculation proves,

x
(σ)
j = argmin

x∈Z(σ)
j

‖b− (A− σI)x‖ = argmin
y∈Cj

∥∥∥b− (A− σI)Z
(σ)
j y

∥∥∥
= argmin

y∈Cj

∥∥b− Vj+1Hj(σ)y
∥∥ = argmin

y∈Cj

∥∥∥βe1 −
((

Hj − Ij
)

Γ
(σ)
j + Ij

)
y
∥∥∥ ,

where we used the flexible shifted Arnoldi relation of (2.27) as well as (2.29).
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Algorithm 2.3 Nested FOM-FGMRES for (A− σkI)xk = b, k = 1, ...,Nσ

1: Initialize r0 = b, β = ‖r0‖, v1 = r0/β
2: for j = 1 to m do

3: Preconditioning: z
(σk)
j = msFOM(A− σkI, vj) . Call of Algorithm 2.1

4: Compute γ
(σk)
j according to (2.18) . Collinearity of msFOM

5: Compute w = Az
(0)
j

6: for i = 1 to j do . (Outer) Arnoldi method
7: hi,j = wHvi
8: w = w − hi,jvi
9: end for

10: Set hj+1,j = ‖w‖ and vj+1 = w/hj+1,j

11: for k = 1 to Nσ do . Loop over shifts

12: Define Z
(σk)
j = [z

(σk)
1 , ..., z

(σk)
j ]

13: Construct Hj(σk) according to (2.29)

14: Solve y
(σk)
j = argminy

∥∥βe1 −Hj(σk)y
∥∥, with e1 = [1, 0, ..., 0]H ∈ Rj+1

15: Set x
(σk)
j = Z

(σk)
j y

(σk)
j

16: end for
17: end for

We note that in the same way as in flexible GMRES for the unshifted case [115],

extra storage is required because the matrices Z
(σk)
j which span the solution space for

every shifted problem need to be stored. This is in fact a major drawback of flexible
GMRES that has already been pointed out by [115] and applies here for every shift.
We, therefore, present in Section 2.5 a nested algorithm that uses flexible QMRIDR
[148, Section 4] as an outer method and partly overcomes this storage requirement.

2.5 Nested IDR-FQMRIDR for Shifted Linear Sys-
tems

In a similar way to the nested FOM-FGMRES algorithm, we present a nested IDR-
FQMRIDR method for shifted linear systems where coll IDR(s) from Algorithm 2.2
is used as inner method. In contrast to the combination in Section 2.4, this is a
combination of two short recurrence methods. For Vm ≡ GmUm, relation (2.7) in
QMRIDR was given by,

AVm = Gm+1Hm.

In flexible QMRIDR (FQMRIDR) which has been introduced in [148, Section 4], this
relation is replaced by

AZm = Gm+1Hm, (A− σI)Z(σ)
m = Gm+1Hm(σ), (2.31)

with Zm,Z
(σ)
m consisting of the respective columns zj ≡ P−1

j vj , z
(σ)
j ≡ P(σ)−1

j vj for
1 ≤ j ≤ m, just as before. One column of (2.31) reads,

Azj = Gm+1hj , (A− σI)z
(σ)
j = Gm+1h

(σ)
j ,
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which we will use in order to derive the shifted Hessenberg matrix of IDR-FQMRIDR.

We assume that the factors γ
(σ)
j are given from (2.26) by an inner coll IDR(s)

iteration. Then, the flexible QMRIDR relation applied to a shifted problem yields:

(A− σI)Pj(σ)−1vj = Gm+1h
(σ)
j

⇔ γ
(σ)
j Azj −

(
γ

(σ)
j − 1

)
vj = Gm+1h

(σ)
j

⇔ γ
(σ)
j Gm+1hj −

(
γ

(σ)
j − 1

)
Gmuj = Gm+1h

(σ)
j

⇔ Gm+1

(
γ

(σ)
j hj −

(
γ

(σ)
j − 1

)
uj

)
= Gm+1h

(σ)
j

and one column of the shifted Hessenberg matrix is given by,

h
(σ)
j = γ

(σ)
j hj −

(
γ

(σ)
j − 1

)
uj , 1 ≤ j ≤ m, (2.32)

where uj ≡ [uj , 0]H is the vector uj from the j-th iteration of QMRIDR [148] with
an extra zero.

Altogether, we have derived the shifted Hessenberg matrix,

Hm(σ) = (Hm −Um) Γ(σ)
m + Um, (2.33)

with Γ
(σ)
m as defined in (2.30), and Um ≡ [u1, ..., um]. Here we see the close rela-

tion between the two nested methods: By comparing the expression for the shifted
Hessenberg matrices in (2.29) and (2.33), we first note that in principle every inner
Krylov method can be used that provides collinear residuals. Moreover, we use this
factor within the (generalized) Hessenberg relation of the outer Krylov method in a
very similar way which shows that in principle also every Krylov method as an outer
iteration is suitable.

Note that Algorithm 2.4 is schematic. For a more detailed and memory-efficient
implementation of the flexible QMRIDR(s) routine, see [148, Algorithm 1]. In fact,
we only need to apply the coll IDR(s) routine as a preconditioner in line 18 and
change line 32 by the formula (2.32) in order to adapt [148, Algorithm 1] to our
nested algorithm. In line 11 of Algorithm 2.4, the following quasi-minimization of the
shifted residual is carried out,

x
(σ)
j = argmin

x∈Z(σ)
j

‖b− (A− σI)x‖ = argmin
y∈Cj

∥∥∥b− (A− σI)Z
(σ)
j y

∥∥∥
= argmin

y∈Cj

∥∥b−Gj+1Hj(σ)y
∥∥ = argmin

y∈Cj

∥∥Gj+1

(
βe1 −Hj(σ)y

)∥∥
≤ argmin

y∈Cj

∥∥βe1 −Hj(σ)y
∥∥ = argmin

y∈Cj

∥∥∥βe1 −
((

Hj −Uj

)
Γ

(σ)
j + Uj

)
y
∥∥∥ ,

with an estimation for ‖Gj+1‖ given in [148].

2.6 Numerical Experiments

The numerical examples we present are motivated from geophysical applications. We
consider the numerical solution of the Helmholtz equation in Section 2.6 and of the
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Algorithm 2.4 Nested IDR-FQMRIDR for (A− σkI)xk = b, k = 1, ...,Nσ

1: Initialize r0 = b, β = ‖r0‖, v1 = r0/β
2: for j = 1 to m do

3: Preconditioning: z
(σk)
j = coll IDR(A− σkI, vj) . Call of Algorithm 2.2

4: Compute γ
(σk)
j according to (2.26) . Collinearity in coll IDR

5: Compute hj , uj as in QMRIDR . See [148, Algorithm 1]

6: Compute h
(σk)
j from (2.32)

7: for k = 1 to Nσ do . Loop over shifts

8: Define Z
(σk)
j = [z

(σk)
1 , ..., z

(σk)
j ]

9: Construct Hj(σk) according to (2.33)

10: Solve y(σk) = argminy

∥∥βe1 −Hj(σk)y
∥∥, with e1 = [1, 0, ..., 0]H ∈ Rj+1

11: Set x
(σk)
j = Z

(σk)
j y(σk)

12: end for
13: end for

time-harmonic elastic wave equation (Navier equation) in Section 2.6. In both cases,
we consider the numerical solution at multiple frequencies that arise from a frequency-
domain model of acoustic and elastic waves, respectively. We will point out that there
exists a one-to-one relation between the considered shifts in (2.1) and the frequencies
of the waves.

All examples have been implemented in Matlab R2011b on a Intel(R) Xeon(R)

CPU E3-1240 V2 @ 3.40GHz CPU. For a more detailed description of the numerical
tests, we refer to our extended technical report†.

For the numerical solution of shifted linear systems of the form

(A− σkI)xk = b, k = 1, ...,Nσ, (2.34)

it is of practical use to re-formulate the problem (2.34) by the following substitutions:

σ̄k ≡ σk − σ∗,
Ā ≡ A− σ∗I,

for some σ∗ ∈ {σ1, ...,σNσ}. This way, it is equivalent to solve the shifted linear
systems

(Ā− σ̄kI)xk = b, k = 1, ...,Nσ, (2.35)

with the only difference that in the formulation (2.35) the unshifted (σ̄k = 0) solution
corresponds to one of the Nσ solutions we are interested in, compare Remark 1.11.

†M. Baumann and M.B. van Gijzen. Nested Krylov methods for shifted linear systems. Technical
report 14-01, Delft University of Technology, 2014.
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An Inhomogeneous Helmholtz Problem

As a first example, we consider acoustic wave propagation which can be modeled by
the Helmholtz equation,

−∆p−
(

2πfk
c(x)

)2

p = s, in Ω ⊂ R2, (2.36)

where p stands for the pressure and fk is the k-th wave frequency. We consider
the wedge problem which was introduced in [104]. Therein, the computational do-
main is Ω = [0, 600] × [0, 1000] and the underlying sound velocity c(x) is heteroge-
neous and represents three different layers, cf. [104] for more details. Moreover, the
sound source is given by a point source at the top of the computational domain,
s = δ(x − 300, z). We distinguish between reflecting boundary conditions (homoge-
neous Neumann boundary conditions),

∂p

∂n
= 0, on ∂Ω, (2.37)

and absorbing boundary conditions (so-called Sommerfeld radiation boundary condi-
tions) of the form,

∂p

∂n
− i
(

2πfk
c(x)

)
p = 0, on ∂Ω, (2.38)

where i is the imaginary unit. Preconditioning techniques for the Helmholtz problem
in the single-shift case (Nσ = 1) are for instance discussed in [42, 44, 45, 121, 147].
When non-homogeneous Neumann boundary conditions (2.38) are included in (2.36),
we end up with a discretization of the form,

(K + i(2πfk)C − (2πfk)2M)p = s, σk = 2πfk, (2.39)

where C represents the boundary conditions (2.38), K is the (negative) discrete Lapla-
cian and M is a mass matrix. The unknown vector p consists of discrete pressure
values. Note that (2.39) is quadratic in σk and can be linearized in the following way,{[

iC K
I 0

]
− σk

[
M 0
0 I

]}[
σkp
p

]
=

[
s
0

]
, k = 1, ...,Nσ, (2.40)

as suggested in [117, 125] which yields a shifted problem. For reflecting boundary
conditions (2.37), we get C = 0 and a shifted linear system can be obtained by simply
multiplying (2.39) with M−1, which we avoid in the following. The shift-and-invert
preconditioner (as introduced in Section 2.2.1) for (2.40) is given by,

P =

[
iC K
I 0

]
− τ

[
M 0
0 I

]
=

[
iC − τM K

I −τI

]
, (2.41)

with damping parameter τ ∈ C and can be seen as the analogue of the shifted Laplace
preconditioner of [42, 44, 45] applied to the block system (2.40). We remark that (2.41)
can be decomposed and inverted in the following way,

P−1 =

[
I τI
0 I

] [
I 0
0 (K + iτC − τ2M)−1

] [
0 I
I −iC + τM

]
. (2.42)
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Therefore, from a computational point of view, applying the preconditioner (2.41)
to (2.40) reduces to efficiently solving systems with the shifted Laplacian (K+ iτC−
τ2M) in (2.42) which is of the same dimension as (2.39).

For large-scale applications, a multigrid approach as in [42, 45, 121] can be used
to approximate the shifted Laplace preconditioner. This gives rise to the question to
which accuracy a multigrid method needs to be applied. Using the nested method
of Section 2.4 or Section 2.5 for the preconditioned shifted problem yields a setting
similar to [143] where the authors analyze inexact nested Krylov methods for the
unshifted case. The insight of [143] on the accuracy that is needed for matrix-vector
multiplications may give guidelines for an extension to the shifted framework.

In the present test case, we aim to solve (2.40) for a range of six frequencies
fk = {1, 2, 4, 8, 16, 32}Hz and restrict ourselves to a direct method for the shift-
and-invert preconditioner. For the resolution of high frequencies and due to the
doubling of unknowns from (2.39) to (2.40), the system size becomes more than
30, 000 equations. We present the convergence behavior for multi-shift GMRES and
multi-shift QMRIDR(8) using only the single shift-and-invert preconditioner (2.42)
in Figure 2.1, respecively. The convergence curves show that the residual norms first
stagnate or even increase in the case of QMRIDR(8). Moreover, the convergence
rates are nearly linear as soon as the residual norms start decreasing. Therefore, it
is intuitive to truncate the inner iterations in this region. The convergence plots of
nested FOM-FGMRES and nested IDR-FQMRIDR(8) are presented in Figure 2.2
and Figure 2.3, respectively.
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Figure 2.1: Convergence behavior of multi-shift GMRES (left) and multi-shift QM-
RIDR(8) (right) for (2.36)-(2.38).

In both nested algorithms, the number of inner iterations is chosen in such a way
that the relative residual norms are of the size 0.1 or smaller which seems to be a
good choice for truncation of the inner algorithm. The convergence rate of the outer
Krylov method is in both cases very fast.

In Table 2.1, we want to point out the CPU time that is required in order to
solve all six shifted systems up to a relative tolerance of 10−8. Comparing multi-shift
GMRES and multi-shift GMRES preconditioned by a nested FOM method (FOM-
FGMRES), we observe that the nested method is more than five times faster. Since
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Figure 2.2: Convergence behavior of FOM-FGMRES for (2.36)-(2.38): Typical inner
convergence (left) and outer convergence (right).
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Figure 2.3: Convergence behavior of IDR-FQMRIDR(8) for (2.36)-(2.38): Typical inner
convergence (left) and outer convergence (right).

the total number of iterations, and therefore, the number of matrix-vector multiplica-
tions is larger in the nested method, we conclude that the observed speed-up is due to
shorter recurrence of the Arnoldi orthogonalization process. This also explains why
we observe no speed-up for multi-shift QMRIDR which is a short recurrence method
by design.

Moreover, we included other possible combinations of the nested algorithm which
show that a combination of inner msFOM with outer FQMRIDR(8) performs best. Ta-
ble 2.1 also shows the performance of coll IDR(8) as a stand-alone multi-shift algo-
rithm as well as restarted multi-shift GMRES [50] (rest msGMRES) which can be seen
as a nested combination of multi-shift GMRES with an outer Richardson iteration.
For all considered cases, the seed shift τ of the shift-and-invert preconditioner (2.41)
has been tuned such that optimal convergence was obtained.
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Table 2.1: Comparison of multi-shift and nested multi-shift algorithms for the
wedge problem (2.36) with absorbing boundary conditions (2.38). Here, we set
σ̂ ≡ max{σk, k = 1, ...,Nσ} when choosing the seed parameter in (2.41).

multi-shift Krylov methods
msGMRES rest msGMRES QMRIDR(8) coll IDR(8)

# inner iterations - 200 - -
# outer iterations 404 4 471 584

seed shift τ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂
CPU time 157.33s 39.4s 62.51s 79.13s

nested multi-shift Krylov methods
FOM-FGMRES IDR(8)-FGMRES FOM-FQMRIDR(8) IDR(8)-FQMRIDR(8)

# inner iterations 160 250 100 170
# outer iterations 5 13 8 9

seed shift τ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂
CPU time 28.56s 216.5s 24.4s 75.41s

The Homogeneous Time-Harmonic Elastic Wave Equation

Our second example considers the wave propagation of sound waves through an elastic
medium. We are interested in the numerical solution of time-harmonic waves at
multiple (angular) frequencies σk = 2πfk, k = 1, ...,Nσ. The scattering of time-
harmonic waves is described in [2] by a Navier equation,

−σ2
kρ(x)u−∇ · τ(u) = s, x ∈ Ω ⊂ R2, (2.43)

where u : Ω → R2 is the unknown displacement vector, s is typically a point source,
and ρ(x) is the density of the material which is assumed to be space-dependent. The
strain and stress tensor are derived from Hooke’s law and are given by,

τ(u) ≡ λ(x) (∇ · u) + 2µ(x)ε(u), ε(u) ≡ 1

2

(
∇u + (∇u)

T
)

.

Note that the underlying density ρ(x) as well as the Lamé parameters λ(x) and µ(x)
have to be prescribed in the considered model, see Table 2.2.

In contrast to the example in Section 2.6, we will consider more realistic boundary
conditions. Therefore, the following impedance boundary condition is prescribed,

iγ(x)σkρ(x)Bu + τ(u)n(x) = 0, x ∈ ∂Ω, (2.44)

where γ is the absorption coefficient, i ≡
√
−1, and Bi,j(x) ≡ cp(x)ninj + cs(x)titj .

Here, ni and ti are the components of the (outer) normal vector n and the tangential
vector t, respectively. For Ω ⊂ R2 we consequently get a 2 × 2 matrix B at every
boundary point x ∈ ∂Ω. The quantities cp and cs are the speed of pressure wave and
shear wave, respectively (see Table 2.2). In the following, we prescribed absorbing
boundary conditions on whole ∂Ω by setting γ ≡ 1.

Table 2.2: Value of constant parameters taken from [2].

ρ [kg/m3] cp [m/s] cs [m/s] λ [Pa] µ [Pa]
2.7 · 103 6.8983 · 103 4.3497 · 103 2.6316 · 1010 5.1084 · 1010
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From a discretization of (2.43)-(2.44) using linear finite elements, we obtain the
linear systems

(K + iσkC − σ2
kM)u = s, k = 1, ...,Nσ, (2.45)

with K,C,M being symmetric and sparse block matrices, and u, s being the dis-
cretized counterpart of u, s in lexicographical order. Here, C contains the boundary
conditions (2.44), and K and M are a stiffness and mass matrix, respectively. Re-
formulation of (2.45) in the same way as (2.40) yields a block system of the form{[

iC K
I 0

]
− σk

[
M 0
0 I

]}[
σku
u

]
=

[
s
0

]
, k = 1, ...,Nσ, (2.46)

which is again a shifted linear system with shifts σ1, ...,σNσ .
The considered numerical setting is taken from [2, 87]. Therein, the parameters

are set to the values presented in Table 2.2, and the unit square is considered as
computational domain Ω. The angular frequencies σk are given by σk = 2πfk and
range from f1 = 5, 000Hz until f6 = 30, 000Hz in uniform steps. For more details on
the discretization and the numerical results, we refer to our corresponding technical
report.
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Figure 2.4: Convergence behavior of multi-shift GMRES (left) and multi-shift QM-
RIDR(4) (right) for (2.46).

We were again running our numerical experiments using an additional shift-and-
invert preconditioner (2.42) with seed shift τ as shown in Table 2.3. In Figure 2.4, we
present the convergence curves of multi-shift GMRES and multi-shift QMRIDR(4)
without nested preconditioning. In this experiments, we observe a flat convergence
behavior that gives rise to an early truncation in the nested framework.

For nested FOM-FGMRES, we chose the number of inner msFOM iterations such
that the relative residual norms are below a threshold tolerance of 0.1, cf. Figure 2.5.
Our numerical experiments have proven that this leads to a rapid convergence in
only 7 iterations in the outer FGMRES loop. When measuring the actual CPU time
that is required to solve all Nσ = 6 shifted systems with multi-shift GMRES and
nested FOM-FGMRES, we observe a speed-up of almost two, cf. Table 2.3.
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Figure 2.5: Convergence behavior of FOM-FGMRES for (2.46): Typical inner conver-
gence (left) and outer convergence (right).

Table 2.3: Comparison of multi-shift and nested multi-shift algorithms for the linear
elastic wave equation (2.43)-(2.44). Again, σ̂ ≡ max{σk, k = 1, ...,Nσ}.

multi-shift Krylov methods
msGMRES rest msGMRES QMRIDR(4) coll IDR(4)

# inner iterations - 20 - -
# outer iterations 103 7 136 134

seed shift τ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂
CPU time 17.71s 6.13s 22.35s 22.58s

nested multi-shift Krylov methods
FOM-FGMRES IDR(4)-FGMRES FOM-FQMRIDR(4) IDR(4)-FQMRIDR(4)

# inner iterations 20 25 30 30
# outer iterations 7 9 5 15

seed shift τ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂ (0.7− 0.7i)σ̂
CPU time 9.12s 32.99s 8.14s 58.36s

Moreover, we applied nested IDR-FQMRIDR(4) to (2.46) in Figure 2.6. From the
convergence behavior of the inner coll IDR iteration (Algorithm 2.2), we note that
the convergence curves show irregular jumps which makes a proper truncation of the
inner preconditioner rather difficult. As in the previous tests, we do not observe a
speed-up in CPU time for the nested algorithm which is mostly due to the fact of
short recurrence of QMRIDR(s).

In Table 2.3 we present as well numerical results for an implementation of restarted
multi-shift GMRES (rest msGMRES) and our IDR-variant that exploits collinear resid-
uals (coll IDR(s)) which can be seen as a multi-shift Krylov method when being ap-
plied as a stand-alone algorithm as presented in Algorithm 2.2. Moreover, we compare
performance of the nested Krylov methods with different inner-outer methods com-
bined. For the specific setting considered in Table 2.3, we first note that QMRIDR(4)

and coll IDR(4) require similar CPU times. Moreover, we observe that a combina-
tion of inner msFOM and outer FQMRIDR(4) perform best among the nested algorithms.
The restarted version of multi-shift GMRES performs best in this setting but did not
converge in some examples described in our technical report.
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Figure 2.6: Convergence behavior of IDR-FQMRIDR(4) for (2.46): Typical inner con-
vergence (left) and outer convergence (right).

Conclusion

This work presents an algorithmic framework for the numerical solution of shifted
linear systems (2.1) with inner-outer Krylov methods that allow flexible precondi-
tioning. In this sense, it can be seen as a generalization of the work of [115, 126, 156]
to sequences of shifted problems. The most general algorithm of this paper can be
summarized in the following way,

1. the flexible preconditioner Pj(σ) is itself an inner multi-shift Krylov method
which produces collinear residuals in the sense of (2.16),

2. the collinearity factor is used in the j-th iteration of an outer Krylov method in
order to derive the Hessenberg matrix of the shifted systems, cf. (2.28), (2.32).

We call this new framework a nested Krylov method for shifted linear systems since the
inner Krylov iteration is considered as a flexible preconditioner for the outer Krylov
method. Moreover, the fact that we can use a Krylov method as flexible preconditioner
shows that a Krylov polynomial can be used as polynomial preconditioner in the sense
of [1].

This general framework has been illustrated and tested for two possible combi-
nations of inner-outer Krylov methods. We present a combination of inner FOM
and outer FGMRES in Algorithm 2.3. Therefore, the collinearity factor for the in-
ner Krylov method (multi-shift FOM) is given by (2.18) without any further ma-
nipulations. When combining multi-shift IDR(s) and FQMRIDR(s) as presented in
Algorithm 2.4, a new variant of IDR(s) has been developed which leads to collinear
residuals with collinearity factor given by (2.26), cf. Algorithm 2.2. In both cases,
a shifted Hessenberg matrix has been derived using the respective collinearity fac-
tors. This has been done for flexible GMRES (2.29) and flexible QMRIDR(s) (2.33),
respectively.

Various numerical tests have been performed that showed an optimal performance
of the nested algorithm when the inner Krylov method was truncated as the relative

residuals satisfy ‖r(σk)
j ‖/‖r(σk)

0 ‖ < 10−1 at every (outer) iteration j and for all shifts
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σ1, ...,σNσ . This way, we were able to obtain a computational speed-up up to a
factor of five when comparing multi-shift GMRES with nested FOM-FGMRES in
Section 2.6.

2.7 Extension: Nested Block Krylov Methods for
Shifted Linear Systems with Multiple Right-
Hand Sides

We briefly describe the extension of the inner-outer multi-shift Krylov algorithm to the
situation when multiple right-hand sides are present. This is in particular of impor-
tance for seismic problems used in Section 2.6 because different source term locations
result in multiple right-hand sides. We exemplify this extension for the combination
of nested block versions of (inner) FOM with (outer) FGMRES†. Therefore, consider
a sequence of shifted linear systems as in (2.1), with multiple right-hand sides,

(A− σkI)x`k = b`, k = 1, ...,Nσ, ` = 1, ...,Nb.

This sequence can be re-written as a block version of (2.1), i.e.,

(A− σkI)Xk = B, B := [b1, ..., bNb ], k = 1, ...,Nσ. (2.47)

Block Krylov methods are discussed for instance in [117, Chapter 6.12]. Shift-
invariance (2.3) for block Krylov spaces reads,

Km(A, R0) ≡ Km(A− σI, R0), ∀σ ∈ C, (2.48)

where we note that Km(A, R0) has dimension m · Nb, and R0 = B if zero initial
guess is used. An orthonormal basis for (2.48) is obtained by the block Arnoldi
method: Initially a QR factorization of the first residual R0 = V1R yields the first Nb
block Arnoldi vectors, then Vj , 1 < j ≤ m, is computed sequentially using Arnoldi
orthogonalization (Algorithm 6.22 in [117]). The block Hessenberg relation for the
shifted and the unshifted case reads,

AVm = Vm+1Hm+1 = VmHm + Vm+1Hm+1,mE
T
m,

(A− σI)Vm = Vm+1H
(σ)
m+1 ≡ Vm+1(Hm+1 − σIm),

where Vm := [V1, ...,Vm], Em is the matrix of the last Nb columns of the identity
matrix Im·Nb , Hm is block-Hessenberg, and Im is an mNb × mNb identity matrix
with Nb zero columns attached at the bottom, i.e. Im = I(m+1)Nb − Em+1; cf. [117,
Chapter 6.12] for details.

The extension of the nested multi-shift methods to block Krylov methods is based
on the fact that in analogy to multi-shift FOM yielding collinear residuals, the matrix
of blocks of residuals in multi-shift block FOM [61] yields linearly dependent columns,

†This work is based on a discussion with Kirk M. Soudhalter (at this time: Johann Radon
Institute for Computational and Applied Mathematics, Linz) in 2015; and is not included in [8].
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i.e., there exists a matrix Γ
(σ)
j ∈ CNb×Nb that relates block residuals after j block

multi-shift FOM iterations such that,

R
(σ)
j = RjΓ

(σ)
j , 1 ≤ j ≤ m, (2.49)

where Γj can be seen as a generalization of the collinearity relation (2.25). This fact
is exploited for restarting shifted block FOM in [61].

Proof 2.3 Let X
(σ)
m be an approximate solution to (2.47) with shift σ after m shifted

block FOM iterations. Consider, in analogy to the proof of Lemma 2.1, the corre-
sponding block residual,

R(σ)
m = B− (A− σI)X(σ)

m = R0 − (A− σI)VmY(σ)
m

= R0 −VmH(σ)
m Y(σ)

m − Vm+1Hm+1,mE
T
mY(σ)

m

= −Vm+1Hm+1,mE
T
mY(σ)

m ,

and, in the same way,

Rm = −Vm+1Hm+1,mE
T
mYm.

The block residuals are, therefore, linearly dependent R
(σ)
m = RmΓ

(σ)
m , with matrix Γ

(σ)
m

in (2.49) given as,

Γ(σ)
m = (Hm+1,mE

T
mYm︸ ︷︷ ︸

Nb×Nb

)−1(Hm+1,mE
T
mY(σ)

m︸ ︷︷ ︸
Nb×Nb

) = Y −1
m Y (σ)

m ∈ CNb×Nb ,

with Ym,Y
(σ)
m being the last Nb ×Nb blocks of Ym, Y

(σ)
m , respectively. �

When using block multi-shift FOM as a preconditioner within an (outer) flexible
block multi-shift GMRES loop, relation (2.27) can be generalized to a block variant
using,

Hm(σ) = (Hm − Im) Γ(σ)
m + Im,

i.e., a block version of (2.29) in Section 2.4. Note that the matrix that relates inner
and outer method,

Γ(σ)
m :=


Γ

(σ)
1

. . .

Γ
(σ)
m

 ∈ CmNb×mNb ,

is now block-diagonal compared to (2.30), and m denotes here the number of (outer)
flexible block multi-shift GMRES iterations.





Chapter 3
An Optimized Shift-And-Invert
Preconditioner for Multi-Frequency
Wave Propagation Problems

Abstract. We consider wave propagation problems that are modeled in the

frequency-domain, and that need to be solved simultaneously for multiple frequen-

cies within a fixed range. For this, a single shift-and-invert preconditioner at a

so-called seed frequency is applied. The choice of the seed is crucial for the perfor-

mance of preconditioned multi-shift GMRES and is closely related to the parameter

choice for the Complex Shifted Laplace preconditioner. Based on a classical GM-

RES convergence bound, we present an optimal seed parameter that purely depends

on the original frequency range. The new insight is exploited in a two-level pre-

conditioning strategy: A shifted Neumann preconditioner with minimized spectral

radius is additionally applied to multi-shift GMRES. Moreover, we present a refor-

mulation of the multi-shift problem to a matrix equation solved with, for instance,

global GMRES. Here, our analysis allows for rotation of the spectrum of the linear

operator. Numerical experiments for the time-harmonic visco-elastic wave equation

demonstrate the performance of the new preconditioners.

This chapter is based on the technical report:

M. Baumann and M.B. van Gijzen (2017). An Efficient Two-Level Preconditioner for Multi-
Frequency Wave Propagation Problems. DIAM Technical Report 17–03, Delft University of
Technology.
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Introduction

We consider the efficient iterative solution of a sequence of ns > 1 shifted systems of
the form,

(K − skM)xk = b, for k = 1, ...,ns, (3.1)

where the matrices K and M depend on the specific problem discretization, and
{sk}nsk=1 is a sequence of (possibly complex) shifts. Problems of the form (3.1) arise,
for instance, in oscillatory hydraulic tomography [119] and lattice quantum chromody-
namic [50]. Moreover, the extension of acoustic Helmholtz problems [22, 42, 123, 147]
to a multi-frequency setting results in the framework (3.1). The focus of the present
work, however, lies on situations where the discretization matrices K,M stem from a
discretization of the time-harmonic elastic wave equation [28]. Depending on the spe-
cific choice of boundary conditions the structure of the matrices varies, and the shifts
sk are either equal to the (angular) wave frequencies [8, 147] or to the squared (an-
gular) wave frequencies [113]. For both situations, we will consider viscous damping
by substituting sk 7→ (1− εi)sk, where ε > 0 is the damping parameter and i ≡

√
−1,

cf. [2, 8, 113, 147].
Throughout this document we put emphasis on the case when the set of shifts

{s1, ..., sns} in (3.1) is distinct, and multiple frequencies are considered, i.e. ns > 1.
Without loss of generality, we assume the frequencies to be ordered, and, in particular,
s1 = mink{sk} =: smin and sns = maxk{sk} =: smax are the extreme frequencies.
A large area of application where the fast solution of (3.1) at multiple frequencies
is required is the so-called Full-Waveform Inversion modeled in frequency-domain;
cf. [94, 105, 106, 153].

If the matrices in (3.1) are large and sparse, Krylov subspace methods are the
common choice for the iterative numerical solution of (3.1). When re-formulating
problem (3.1) to problems with shifted identity, Krylov methods can be particularly
efficient, and variants of almost all popular Krylov methods have been derived for
this type of problems (such as GMRES(k) [50], FOM(k) [117], BiCGstab(`) [49] and
IDR(s) [8, 148] among others). It is, however, difficult to apply a preconditioner and,
at the same time, preserve the shifted structure: Most recently, polynomial precondi-
tioners [1], flexible preconditioners [119], nested methods [8], and multi-preconditioned
methods [6] have successfully been developed. Alternative approaches to solve se-
quences of linear systems such as (3.1) are the reformulation as a matrix equation [13],
and the usage of information of previous solves called recycling [132, 133].

In most cases, a single preconditioner of the form,

P(τ) := (K − τM), with seed shift τ ∈ C, (3.2)

is applied where the choice of τ ∈ C for a given set {s1, ..., sns} is crucial for the
convergence behavior of the overall algorithm, as has been pointed out in [6, 13, 119].
The present paper addresses the following:

1. We present an optimal choice for the seed parameter τ in (3.2) when a single
shift-and-invert preconditioner is applied to (3.1). Our proposed choice is based
on spectral analysis and the minimization of a classical GMRES convergence
bound that also holds in the multi-shift framework.
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2. Once a preconditioner of the form (3.2) is applied, the spectra are known to
be bounded by circles which gives rise to the efficient application of a shifted
Neumann preconditioner [1] as a second-level preconditioner. Our choice for τ
minimizes its spectral radius.

3. The spectral analysis of the multi-shift framework is exploited for an equivalent
matrix equation formulation of (3.1) studied in [13]. A simple post-rotation of
the block spectrum yields a second-level preconditioner for the matrix equation
and significantly speeds up convergence of global GMRES [68].

We point out that the analysis of an efficient seed parameter τ is fundamentally dif-
ferent from the single-frequency case studied in [147] since there is no trivial solution
that needs to be excluded from the optimization. Moreover, note that we can not
include directly frequency-dependent Sommerfeld boundary conditions in the pre-
conditioner (3.2), as recommended in [84]. When (3.2) is applied inexactly using a
multi-grid algorithm [112] or deflation [77], the choice of τ is usually combined with
damping such that the multi-grid solver works well, cf. [22, 53] for an analysis in
the Helmholtz case. We do not consider this aspect in this paper but note that the
MSSS preconditioner developed in [13] allows to apply the inverse of (3.2) fast, even
for large frequencies. We conclude with numerical examples obtained from a finite
element discretization of the time-harmonic visco-elastic wave equation at multiple
wave frequencies.

3.1 Treatment of The Time-Harmonic Elastic Wave
Equation at Multiple Frequencies

The aim of this work is the efficient iterative solution of the elastic wave equation in
a frequency-domain formulation. The displacement vector u(t,x) at time t and with
spatial component x satisfies the elastic wave equation,

ρü = ∇·σ(u) + s, in (0,T ]× Ω, Ω ⊂ Rd, d ∈ {2, 3}, (3.3)

with inhomogeneous material density ρ = ρ(x), stress tensor σ, and source term s,
cf. [28]. We consider the following set of boundary conditions,

ρu̇ = −σ(u)n for x ∈ ∂Ωa and σ(u)n = 0 for x ∈ ∂Ωr, (3.4)

where the condition on ∂Ωr models reflection of waves, and the Sommerfeld radiation
condition on ∂Ωa is one way to model absorption. For the time-harmonic ansatz
u(t,x) = û(x)e−iωt substituted into (3.3)-(3.4) we obtain:

−ω2ρû−∇·σ(û) = ŝ, in Ω, (3.5a)

iωρ B(cp, cs) û + σ(û)n = 0, on ∂Ωa, (3.5b)

σ(û)n = 0, on ∂Ωr. (3.5c)

Note that, in the frequency-domain formulation (3.5a)-(3.5c), the Sommerfeld condi-
tion yields a term that is proportional to the frequency. For the definition of B(cp, cs)
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in (3.5b) we refer to [2, 13]. In [13] a detailed derivation of a finite element discretiza-
tion of (3.5a)-(3.5c) is presented that yields linear systems of the form,

(K + iωkC − ω2
kM)ûk = ŝ, k = 1, ...,Nω, (3.6)

with K being a stiffness matrix, M being a mass matrix and C includes Sommer-
feld boundary conditions. The angular frequencies ωk appear quadratic in (3.6).
Therefore, we apply a linearization [125] that results in block-systems of doubled
dimensions, ([

iC K
I 0

]
− ωk

[
M 0
0 I

])[
ωkûk
ûk

]
=

[
ŝ
0

]
, k = 1, ...,Nω. (3.7)

Let ε > 0. We formally add viscous damping to (3.6) by introducing the set of complex
frequencies ω̂k := (1−εi)ωk. The damped problem reads, (K + iω̂kC − ω̂2

kM)ûk = b,
for k = 1, ...,Nω, where the ansatz u(t,x) = û(x)e−iω̂t = û(x)e−iωte−εωt now includes
a damping term. When damping is added to the problem, spectral properties change
and, in particular, the bounding circles that we describe in Section 3.3 do no longer
touch the origin. The systems (3.7) are of the form (3.1), see Problem 3.1.

We also consider different types of absorbing boundary conditions on ∂Ωa: The
case of purely non-mixed boundary conditions in (3.4) trivially yields C ≡ 0 in (3.6)
and we, again, obtain a problem of the form (3.1). Absorption can also be modeled
by introducing a sponge layer [113] or using perfectly matched layers (PML) [14].
The frequency-independent PML derived in [31] yields a term C(ω0). In general,
however, including PML boundary conditions yields a nonlinear term C(ω) that is not
considered here. We summarize the above derivations by the following two problem
statements.

Problem 3.1 Consider the discretized time-harmonic elastic wave equation (3.5a)-
(3.5c) with Sommerfeld radiation boundary conditions [2, 13] on ∂Ωa 6= ∅, and multiple
angular frequencies ωk ≡ 2πfk,

(K + iωkC − ω2
kM)ûk = ŝ, k = 1, ...,Nω, {K,C,M} ∈ CN×N ,

where the matrices K and C are symmetric positive semi-definite, and M is symmetric
positive definite. The linearization (3.7) yields a shifted problem of the form (3.1)
with, in particular, block matrices,

K :=

[
iC K
I 0

]
∈ C2N×2N , M :=

[
M 0
0 I

]
∈ C2N×2N , shifts sk := ωk, (3.8)

and right-hand side vector b := [̂s, 0]H.

Remark 3.2 (Block decomposition) In reformulation (3.7), dimensions are dou-
bled compared to the original problem size in (3.6). For the preconditioner (3.2),
however, the following decomposition holds,

P(τ)−1 = (K − τM)−1 =

([
iC K
I 0

]
− τ

[
M 0
0 I

])−1

(3.9)

=

[
I τI
0 I

] [
I 0
0 (K + iτC − τ2M)−1

] [
0 I
I −iC + τM

]
, (3.10)

where the (inexact) inversion is required only at the original problem size.
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Problem 3.3 Consider the discretized time-harmonic elastic wave equation (3.5a)-
(3.5c) with frequency-independent PML [31] or ’sponge layer’ [113] boundary condi-
tions replacing (3.5b), and angular frequencies ωk,

(K − ω2
kM)ûk = ŝ, k = 1, ...,Nω,

where K is symmetric positive semi-definite, and M is symmetric positive definite.
The problem is, trivially, of the form (3.1) for K := K,M := M and shifts sk := ω2

k

equal to the squared angular frequencies.

Remark 3.4 For ε > 0, the damped problem corresponding to Problem 3.1 and Prob-
lem 3.3, respectively, is given by the substitution,

(K − ŝkM)x̂k = b, where ŝk := (1− εi)sk for k = 1, ...,ns. (3.11)

In our following notation, we indicate quantities related to the damped problem with
a hat.

3.2 The Seed Parameter of the Shift-And-Invert Pre-
conditioner for Multi-Shift GMRES

In this section we briefly review the multi-shift GMRES method introduced in [50].
Throughout this paper we always consider the case when multi-shift GMRES is right-
preconditioned by a preconditioner of the form (3.2). When applying a (scaled) shift-
and-invert preconditioner as a right preconditioner to systems (3.1) the resulting
preconditioned systems are shifted linear systems. Moreover, the shift parameter
(sometimes called seed frequency) gives some freedom. Recall that we consider a
sequence of problems of the form (3.1),

(K − skM)xk = b, for k = 1, ...,ns,

where the matrices K,M are defined in Problem 3.1 or Problem 3.3, respectively.
For τ ∈ C \ {0}, we define the shift-and-invert preconditioner P(τ) = (K − τM)
as in (3.2). Applying right preconditioning to (3.1) using the scaled preconditioner
Pk := 1/(1− ηk)(K − τM) = 1/(1− ηk)P(τ) yields,

(K − skM)P−1
k yk = b ⇔ (K(K − τM)−1 − ηkI)yk = b, (3.12)

where ηk := sk/(sk − τ). Note that the latter is a (preconditioned) shifted linear
system with (possibly complex) shifts ηk and system matrix KP(τ)−1. Note further
that the back-substitution xk = P−1

k yk = (1 − ηk)(K − τM)−1yk can be computed
efficiently for k = 1, ...,ns. A similar equivalence as (3.12) that yields shifted systems
with base matrix M(K − τM)−1 is used in [119].

Remark 3.5 It is well-known that Krylov subspaces are shift-invariant, i.e. for the
matrix A := K(K − τM)−1 it holds,

Km(A, b) ≡ span{b,Ab, ...,Am−1b} = Km(A− ηI, b) ∀η ∈ C,∀m ∈ N.
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As a consequence, the shifted Arnoldi relation holds,

(A− ηI)Vm = Vm+1(Hm − ηI),

where the columns of Vm are an orthonormal basis of Km(A, b) that are computed by
the Arnoldi method only once for all shifted systems, cf. Algorithm 3.1.

Algorithm 3.1 Multi-shift GMRES with right preconditioning for (3.12), cf. [50]

1: Set r(0) = b, β =
∥∥r(0)

∥∥ , v1 = r(0)/β . Initialization with zero initial guess
2: for j = 1 to m do
3: Apply w = (K − τM)−1vj . Apply preconditioner (3.2) (cf. Section 3.3)
4: Compute w = Kw
5: for i = 1 to j do . Arnoldi method
6: hi,j = wHvi
7: w = w − hi,jvi
8: end for
9: Set hj+1,j = ‖w‖ and vj+1 = w/hj+1,j

10: Set Hm = [hi,j ]
j=1,...,m
i=1,...,m+1 and Vm = [v1, ..., vm] . Orthogonal basis of

Km(A, b), A := K(K − τM)−1

11: end for
12: for k = 1 to ns do . Loop over shifts
13: Solve yk = argminy ‖ βe1 − (Hm − ηkI)y ‖ . Solve shifted Hessenberg

systems
14: Compute xk = (1− ηk)(K − τM)−1Vmyk . Back-substitution
15: end for

In [147] the authors analyze spectral properties of the shifted Laplace precondi-
tioner in the single-frequency case, ns = 1, and exploit their analysis within precon-
ditioned GMRES [118]. One of the results of [147] is the fact that the preconditioned
spectrum (3.12) lies within circles of radius R and center c. Both are, in the single
frequency case, a function of s1 and τ (denoted by z1 and z2 in [147], respectively).
Moreover, the authors of [147] show that in the absence of viscous damping the cir-
cles touch the origin, i.e. R = |c|. We state the following convergence bound for the
GMRES residual norm that is in the absence of damping (compare Remark 3.4) of
little practical use.

Theorem 3.6 (Classical convergence bound for GMRES, [117]) Let the eigen-
values of the preconditioned matrix be enclosed by a circle with radius R and center c.
Then the GMRES-residual norm after j iterations

∥∥r(j)
∥∥ satisfies,∥∥r(j)

∥∥∥∥r(0)
∥∥ ≤ c2(X)

(
R

|c|

)j
, where r(0) = b if x0 ≡ 0,

and where X is the matrix of eigenvectors, and c2(X) denotes its condition number
in the 2-norm.



Section 3.3 Spectral Analysis and Optimal Seed Shift Parameter τ∗ 53

The convergence bound for GMRES described in Theorem 3.6 can be extended to
the preconditioned multi-shift variant presented in Algorithm 3.1 in a straight-forward
way. That is because in multi-shift GMRES optimality for the shifted residuals holds
for all individual systems.

Corollary 3.7 (Convergence bound for multi-shift GMRES, [50, 117]) An ex-
tension of the bound described in Theorem 3.6 to the (preconditioned) multi-shift
GMRES-residual norms computed by Algorithm 3.1 is given by,∥∥∥r(j)

k

∥∥∥∥∥r(0)
∥∥ ≤ c2(X)

(
Rk
|ck|

)j
, k = 1, ...,ns, j ≤ m, (3.13)

where the spectrum of the k-th shifted system after preconditioning is assumed to be
enclosed by a circle of radius Rk and center point ck, respectively.

The following section gives detailed explanations on the suitable choice of the bound-
ing circles (ck,Rk) in terms of the seed frequency τ . In particular, we will derive
explicit formulas for these quantities, and make use of the fact that |ck| > Rk when
viscous damping is added such that the bound in Corollary 3.7 can be exploited.

3.3 Spectral Analysis and Optimal Seed Shift Pa-
rameter τ ∗

We describe the main result of this paper: The efficiency of the preconditioner in (3.12)
highly depends on the choice of the seed parameter τ ∈ C. The following lemma
provides insight how to choose this parameter such that the bound of Corollary 3.7
is minimized. The result yields an explicit formula for τ in terms of the considered
frequency range [smin, smax], and the damping parameter ε ≥ 0 as introduced in
Remark 3.4.

Lemma 3.8 (Optimal seed frequency for preconditioned shifted GMRES)
Let {sk}nsk=1 ⊆ [smin, smax] ⊂ R. Consider the sequence of problems (K − skM)xk = b
with a right preconditioner Pk := 1/(1− ηk)(K − τM),

(K − skM)P−1
k yk = b, xk = P−1

k yk, for k = 1, ...,ns. (3.14)

For ηk = sk/(sk − τ), problem (3.14) is equivalent to,

(K(K − τM)−1 − ηkI)yk = b, k = 1, ...,ns, (3.15)

where P(τ) = (K−τM) is the shift-and-invert preconditioner at seed frequency τ , and
the matrices K andM and shifts {sk}nsk=1 are defined in Problem 3.1 and Problem 3.3,
respectively. The following statements give guidance on choosing τ ∈ C in an optimal
sense:

(i) For λ from the spectrum of KM−1, λ ∈ Λ[KM−1], it holds =(λ) ≥ 0.
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(ii) Let τ = <(τ) + i=(τ). The preconditioned spectra of (3.15) are enclosed by
circles of radii Rk and center points ck,

ck =

(
1

2
− sk(sk −<(τ))

(sk −<(τ))2 + =(τ)2
,
<(τ)

2=(τ)
− sk=(τ)

(sk −<(τ))2 + =(τ)2

)
∈ C,

Rk =
1

2

√
1 +

(<(τ)

=(τ)

)2

=: R(τ).

The preconditioned spectra of (3.15) with viscous damping ŝk := (1− εi)sk are

enclosed by circles of radii R̂k = R(τ) and center points ĉk,

ĉk =

(
1

2
− (1 + ε2)s2k + (ε=(τ)−<(τ))sk

(sk −<(τ))2 + (εsk + =(τ))2
,
<(τ)

2=(τ)
− (=(τ) + ε<(τ))sk

(sk −<(τ))2 + (εsk + =(τ))2

)
.

(iii) The set of points {ĉk}nsk=1 ⊂ C described in statement (ii) lie on a circle with
center c and radius R given by,

c =

(
0,

ε|τ |2
2=(τ)(=(τ) + ε<(τ))

)
, R =

√
|τ |2(ε2 + 1)

4(=(τ) + ε<(τ))2
.

In the undamped case, ε = 0, this center is equal to the origin and, therefore,
R = R(τ).

(iv) Consider the preconditioner P(τ∗) = (K−τ∗M) in (3.15). An optimal seed fre-
quency τ∗ for Algorithm 3.1 that minimizes the GMRES-bound in Corollary 3.7
is given by,

τ∗(ε) = argmin
τ∈C

max
k=1,..,ns

(
R(τ)

|ĉk|

)
=

2sminsmax

smin + smax
− i
√

[ε2(smin + smax)2 + (smax − smin)2] sminsmax

smin + smax
,

(3.16)

where smin := mink{sk} and smax := maxk{sk}.
Proof 3.9 We prove this lemma ’step-by-step’.

(i) For K,M as in Problem 3.3 the statement trivially holds since λ ∈ R. With the
assumption on K,C and M in Problem 3.1 we know that all eigenvalues µk of
the quadratic eigenvalue problem,

(K + µkC + µ2
kM)vk = 0, k = 1, ..., 2N ,

are stable, i.e. <(µk) ≤ 0, cf. [Table 1.1][137]. Eigenvalues of KM−1 are then
given by λk := −iµk, and the corresponding eigenvectors are vk :=M[−iµkvk, vk]T:[

iC K
I 0

] [
M−1 0

0 I

]
vk = λkvk

⇔
[
iC K
I 0

] [
−iµkvk
vk

]
= −iµk

[
M 0
0 I

] [
−iµkvk
vk

]
⇔

[
µkCvk +Kvk
−iµkvk

]
=

[
−µ2

kMvk
−iµkvk

]
.



Section 3.3 Spectral Analysis and Optimal Seed Shift Parameter τ∗ 55

The definition of λk together with <(µk) ≤ 0 imply that =(λk) ≥ 0 for Prob-
lem 3.1.

(ii) Consider the system matrix of (3.15),

(K(K − τM)−1 − ηkI) = KM−1(KM−1 − τI)−1 − ηkI, with ηk =
sk

sk − τ
.

The latter is a Möbius transformation with complex shift, hence the spectrum
satisfies the mapping,

Λ[KM−1] 3 λ 7→ λ

λ− τ −
sk

sk − τ
.

Since =(λ) ≥ 0, it is well-known [147] that for sk ≡ 0 the Möbius transformation

maps the spectrum within a circle of radius R =
∣∣∣ τ
τ−τ̄

∣∣∣ and center c0 = −τ̄
τ−τ̄ . In

the shifted case, it holds:

R̂k ≡ R(τ) =

∣∣∣∣ τ

τ − τ̄

∣∣∣∣ =
1

2

√
1 +

(<(τ)

=(τ)

)2

, (3.17)

ĉk =
−τ̄
τ − τ̄ −

ŝk
ŝk − τ

=
−<(τ) + i=(τ)

2i=(τ)
− sk − iεsk

(sk −<(τ))− i(εsk + =(τ))

=

(
1

2
− (1 + ε2)s2

k + (ε=(τ)−<(τ))sk
(sk −<(τ))2 + (εsk + =(τ))2

)
+

i

( <(τ)

2=(τ)
− (=(τ) + ε<(τ))sk

(sk −<(τ))2 + (εsk + =(τ))2

)
, (3.18)

where we again write τ = <(τ)+ i=(τ). The case ε = 0 yields the corresponding
result for ck in the absence of viscous damping. Note that the radii (3.17) are
independent of k.

(iii) We prove this fact by first constructing a center point c. Therefore, we use two
points ĉk that are opposite to each other with real part zero,

<(ĉk) = 0 ⇔ s
1/2
k = ±|τ |(ε2 + 1)−1,

where we note that negative frequencies are not considered. Substituting s
1/2
k

into the imaginary part of (3.18) and computing the middle point yields,

c =

(
0,

ε|τ |2
2=(τ)(=(τ) + ε<(τ))

)
. (3.19)

We use Maple to show that every point ĉk has a constant distance from c. This
distance is the squared radius R,

R2 = ‖ĉk − c‖22 =
|τ |2(ε2 + 1)

4(=(τ) + ε<(τ))2
, independent of sk. (3.20)
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(iv) In part (iii) of this proof, we have shown that the center points ĉk (3.18) of the
preconditioned spectra lie on a circle with center c (3.19) and radius R (3.20).
Therefore, an alternative parametrization of the distance to the origin |ĉk| is
given by,

|ĉk|2 = R2 + =(c)2 + 2=(c)R sin(ϕk) = R2 −=(c)2 + 2=(c)=(ĉk),

where the imaginary part of ĉk is given explicitly by (3.18), and ϕk is the cor-
responding phase angle, cf. Figure 3.1 (right). The expression for the GMRES
bound in Corollary 3.7 can, hence, be simplified,

τ∗(ε) = argmin
τ∈C

max
k=1,..,ns

(
R(τ)

|ĉk|

)
= argmin

τ∈C
max

k=1,..,ns

(
R(τ)2

|ĉk|2
)

(3.21)

= argmin
τ∈C

max
k=1,..,ns

(
R2

R2 + =(c)2 + 2=(c)R sin(ϕk)

)
(∗)
= argmin

τ∈C
max

k∈{1,ns}

(
R2

R2 −=(c)2 + 2=(c)=(ĉk)

)
(3.22)

(∗∗)
= {τ ∈ C |=(ĉ1) = =(ĉns)} , (3.23)

where in step (∗) we use that sin(ϕk) obtains its minimum at the boundary (the
case sin(ϕk) = −1 has been excluded in part (iii)), and in step (∗∗) we use that
the minimum of the maximum of two functions occurs when the two functions
are equal. Setting the imaginary parts equal (3.21) yields:

smin

(smin −<(τ∗))2 + (εsmin + =(τ∗))2
=

smax

(smax −<(τ∗))2 + (εsmax + =(τ∗))2

⇒ <(τ∗)2 + =(τ∗)2 = sminsmax(1 + ε2).

We next express τ∗ = s∗eiϕ
∗

in polar coordinates, with length given by s∗ =√
sminsmax(1 + ε2). Expressing the objective function J := R2[R2 − =(c)2 +

2=(c)=(ĉk)]−1in terms of (s,ϕ), we can use Maple† to solve ∂J (s∗,ϕ)
∂ϕ = 0 for

the unique minimum,

ϕ∗ = ϕ∗(smin, smax, ε) = arctan

−√ε2(smin + smax)2 + (smax − smin)2

4sminsmax

 .

(3.24)

The conversion to Cartesian coordinates completes the proof. �

Remark 3.10 Note that for ε = 0, the ratio (3.16) equals to 1, cf. [147]. In this
limit case, the optimal seed frequency yields,

τ∗(0) =
2sminsmax

smin + smax
− i |smax − smin|

√
sminsmax

smin + smax

=
√
sminsmax exp

(
i arctan

(
−|smax − smin|

2
√
sminsmax

))
, (3.25)

†We added corresponding Maple [v 18.02] scripts to our public repository (https://github.
com/ManuelMBaumann/opt_tau).

https://github.com/ManuelMBaumann/opt_tau
https://github.com/ManuelMBaumann/opt_tau
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which is a function of the geometric mean of the extreme frequencies, and their dis-
tance.

Remark 3.11 For the mono-frequency case, smin = smax ≡ s, we obtain the expected
(trivial) results τ∗(ε) = s

√
1 + ε2ei arctan(−ε) = (1− εi)s = ŝ, and τ∗(0) = s.

We illustrate the results of Lemma 3.8 in Figure 3.1: The left figure demon-
strates the optimality of τ∗ as stated in (3.16). Moreover, we plot the angle along
which we have optimized in (3.24) as a dashed line. In the right figure, we show the
corresponding preconditioned spectrum with bounding circles for a surrogate prob-
lem. This distribution of the circles corresponds to the case when τ minimizes the
bound (3.16). Since the radii of all preconditioned spectra have the same magnitude,
we see that the two extreme frequencies are expected to converge slowest because the
respective distances to the origin is smallest which yields a worst case for the bound
in Corollary 3.7.
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Figure 3.1: Left: Convergence bound and optimal seed frequency τ∗ according
to (3.16). Along the dashed line the function is differentiable. Right: Preconditioned
spectra and surrounding circles for positive damping ε = 0.7 added to Problem 3.1.
Here, we use Nω = 20 frequencies equally spaced within the interval [1, 9]Hz. The
imaginary parts that belong to the extreme frequencies are equal as imposed in (3.21),
but not equal to zero.

As a result of Lemma 3.8, we see that the GMRES-bound in Corollary 3.7 and
the location of the optimal seed frequency (3.16) are explicit functions of the damp-
ing parameter ε and the extreme frequencies [smin, smax]. This is both illustrated in
Figure 3.2. The optimization of the seed parameter is obtained based on the damped
problem. Because of continuity in Figure 3.2 (left), we note that τ∗ smoothly de-
pends on the damping factor ε which motivates the choice for the seed parameter in
Remark 3.10 in the limit case ε→ 0.

Lemma 3.8 does not give information about the actual value of the multi-shift
GMRES bound (3.13) other than Rk/|ck| ≡ 1 when ε = 0. In the following corollary
we show that when τ∗ is chosen according to (3.16), the bound Rk/|ck| evaluated
at τ∗ is a function of the damping parameter ε > 0 and the ratio ρ := smax/smin only.
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Figure 3.2: Left: Imaginary part of τ∗ scaled by smax for different intervals [smin, smax]
and varying damping parameter ε. Right: GMRES-bound (3.13) at τ∗ as a function
of the ratio smax/smin and ε. Note that in (3.16) the real part of τ∗ is independent of
ε and is, therefore, not plotted here.

Corollary 3.12 Let ε > 0, and τ∗ = τ∗(ε, smin, smax) as in (3.16) for a frequency
interval [smin, smax]. Then there exists a function f(ε, smax/smin) such that,

Rk(τ∗)
|ck(ε, τ∗)| = f(ε, ρ), where ρ := smax/smin, (3.26)

i.e. the bound in (3.13) depends only on the damping parameter ε and the ratio of the
interval boundaries ρ. The quantities Rk and ck are,

Rk(τ∗) = R(τ∗) =
1

2

√
1 +

(<(τ∗)
=(τ∗)

)2

,

ck(ε, τ∗)
ε>0
= ĉk(τ∗) =

 1
2 −

(1+ε2)s2k+(ε=(τ∗)−<(τ∗))sk
(sk−<(τ∗))2+(εsk+=(τ∗))2

<(τ∗)
2=(τ∗) −

(=(τ∗)+ε<(τ∗))sk
(sk−<(τ∗))2+(εsk+=(τ))2

 ∈ C,

according to Lemma 3.8(ii).

Proof 3.13 We show that

R(τ∗(ε, smin, smax))

|ck(ε, τ∗(ε, smin, smax))|
=

R(τ∗(ε, d·smin, d·smax))

|ck(ε, τ∗(ε, d·smin, d·smax))|
, k ∈ {1,ns}

for any scalar d. First, note that

τ∗(ε, s, t) =
2st

s+ t
− i
√

[ε2(s+ t)2 + (t− s)2] st

s+ t
,

is a homogeneous function of degree 1 with respect to the second and third argument,
i.e., τ∗(ε, dsmin, dsmax) = d · τ∗(ε, smin, smax). Therefore, the real and imaginary part
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of τ∗ scale with d in the same way. This implies,

R(d τ∗) =
1

2

√
1 +

(
d <(τ∗)
d =(τ∗)

)2

= R(τ∗),

and, moreover,

<(c1(ε, dτ∗)) =
1

2
− d2(1 + ε2)s2

1 + d2(ε=(τ∗)−<(τ∗))s1

d2(s1 −<(τ∗))2 + d2(εs1 + =(τ∗))2
= <(c1(ε, τ∗)),

=(c1(ε, dτ∗)) =
d<(τ∗)
2d=(τ∗)

− d2(=(τ∗) + ε<(τ∗))s1

d2(s1 −<(τ∗))2 + d2(εs1 + =(τ∗))2
= =(c1(ε, τ∗)),

and, in the same way, cns(ε, dτ
∗) = cns(ε, τ

∗), where we associate smin with s1 (i.e.
k = 1), and smax with sns , cf. (3.22) in Lemma 3.8(iv). Thus, s1 and sns scale with
d as the interval boundaries do. �
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Figure 3.3: Number of iterations j such that the relative residual norm is bounded by
{1e-4, 1e-6, 1e-8}. The residual rk is associated with the (angular) wave frequency
sk ∈ [smin, smax] with fixed ratio ρ = smax/smin = 2, and c2(X) set to 1 in (3.13).

The bound (3.26) is plotted as a function of the damping parameter ε and the
ration ρ = smax/smin in Figure 3.2 (right). If ρ is kept constant, the GMRES bound
implies an a priori known maximum iteration number for a fixed relative residual
tolerance, cf. Figure 3.3. The numerical experiment 3.19 exploits the insight of
Corollary 3.12 when splitting a frequency interval [smin, smax] into subintervals in a
balanced way.
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3.4 Areas of Application in a Two-Level Precondi-
tioning Framework

We present two examples in which the insight of the previous section is exploited
for the design of efficient two-level preconditioners: In Section 3.4.1 we make use of
the spectral bounds of Lemma 3.8 in order to choose the parameter of the shifted
Neumann polynomial preconditioner [1] such that its spectral radius is minimal. In
Section 3.4.2 we present a reformulation of the multi-frequency problem (3.1) as a
matrix equation, cf. [13, 10]. Here, the convergence behavior depends on the union of
the spectra of all considered frequencies and, hence, a suitable rotation of the bounding
circles yields an efficient second-level preconditioner for global GMRES [68].

3.4.1 Shifted Neumann Preconditioning Techniques

For a set of frequencies {sk}nsk=1 and viscous damping parameter ε > 0, the pre-
conditioned shifted problems (3.15) at an optimal seed frequency τ∗ given explicitly
by (3.16) read,

(A− ηkI)yk = b, with A := K(K − τ∗M)−1 and ηk :=
ŝk

ŝk − τ∗
=

(1− εi)sk
(1− εi)sk − τ∗

.

For sk = 0, the spectrum of the matrix A is bounded by a circle of radius R and
center c0 as stated in part (ii) of Lemma 3.8,

R =
1

2

√
1 +

(<(τ∗)
=(τ∗)

)2

and c0 =
τ̄∗

τ̄∗ − τ∗ =

(
1

2
,
<(τ∗)
2=(τ∗)

)
.

We consider a Neumann preconditioner [117, Chapter 12.3] of degree n as an approx-
imation to the inverse of A,

A−1 ≈
n∑
i=0

(I − ξA)
i

=: pn(A), with parameter ξ =
1

c0
=
τ̄∗ − τ∗
τ̄∗

. (3.27)

and its monic representation pn(A) =
∑n
i=0 γiAi. Shift-invariance, cf. Remark 3.5,

can be preserved by the Neumann preconditioner if the following holds,

(A− ηkI)pn,k(A) = Apn(A)− η̃kI, (3.28)

where pn,k(A) =
∑n
i=0 γi,kAi is a polynomial preconditioner of degree n for the k-th

shifted matrix (A− ηkI). Substitution yields,

n∑
i=0

γi,kAi+1 −
n∑
i=0

ηkγi,kAi −
n∑
i=0

γiAi+1 + η̃kI = 0. (3.29)

The latter (3.29) is a difference equation and can be solved backwards [1]:

γn,k = γn,

γi−1,k = γi−1 + ηkγi,k, for i = n, ..., 1,

η̃k = ηkγ0,k.
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As a result, we solve the shifted systems on the right-hand side in (3.28) with Al-
gorithm 3.1 using the Neumann preconditioner (3.27) of degree n. An alternative
polynomial preconditioner for shifted systems is derived in [160].

Remark 3.14 Note that pn(A) = c0A−1, as n→∞, converges to the scaled inverse
of A. From (3.28) we conclude that pn,k(A) = (c0 − η̃k)(A − ηkI)−1,n → ∞, and,
hence, pn,k is a polynomial preconditioner of degree n for the k-th shifted problem
(A− ηkI).

3.4.2 A Spectral Scaling Strategy for the Matrix Equation For-
mulation

An alternative approach to efficiently solve multi-frequency wave problems is to
rewrite the discretized problem as a matrix equation A(X) = B, where the block
unknown X is the stacked numerical solution at different frequencies [13] and A is

a linear operator of the form, A(X) =
∑J
j=1AjXB

H
j = C, where J = 2 in (3.30).

Consider, for instance, Problem 3.3 and the reformulation,

A(X) := KX−MXΩ2 = B, where Ω:= diag(ω1, ...,ωNω ), B := ŝ1T, (3.30)

and where the unknown is X := [û1, ..., ûNω ]. The spectrum of the operator A is
equal to the spectrum of the block diagonal matrix of the corresponding vectorized
problem, (K − ω2

1M)
. . .

(K − ω2
Nω
M)


 û1

...
ûNω

 =

ŝ
...
ŝ

 ,

and, hence, the spectrum of A equals the union of the spectra of the shifted systems
in Problem 3.3. Consider the iterative solution of (3.30) with a global Krylov method
such as global GMRES [68]. The analysis of Section 3.3 can be used in order to
improve the convergence of global GMRES for the matrix equation (3.30). Therefore,
we define the preconditioners,

P−1
1 (Y) := (K − τ2M)−1YΓ, where Γ := diag (1− η1, ..., 1− ηNω ) , (3.31a)

P−1
2 (Y) := YR, where R := diag

(
1, e−i(φ2−φ1), ..., e−i(φNω−φNω−1)

)
, (3.31b)

where φk is the angular component of ĉk in Lemma 3.8(ii), and ηk := ω2
k/(ω

2
k − τ)

as in (3.12). Because of the correspondence of the spectrum of the matrix operator
with the shifted systems, the above preconditioners have the following interpretation
that are illustrated in Figure 3.4: The application of P−1

1 as a right preconditioner
in global GMRES is equivalent to (3.14) and the left-hand side in (3.12) and yields
a spectrum that is equal to the union of the circles described in Lemma 3.8. For
the fast convergence this spectrum is not favorable. Therefore, we apply P−1

2 as a
second-level preconditioner that yields a rotation of the spectrum to the right half
plane.

Note that the preconditioners (3.31a) and (3.31b) commute, i.e. (A◦P−1
1 )◦P−1

2 =
(A◦P−1

2 ) ◦P−1
1 . For global GMRES, this allows to apply P1 inexactly and, trivially,

apply P2 exactly.
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Figure 3.4: Left: Block spectrum of the linear operator (3.30) with shift-and-invert
preconditioner (3.31a) that is equivalent to the multi-shift approach. Right: Block
spectrum after additional rotation with (3.31b). We use a surrogate problem with
Nω = 5 frequencies equally spaced within fk ∈ [1, 9] Hz.

Remark 3.15 In the next section we also consider the case when Problem 3.1 is
reformulated as the matrix equation A(X) := KX + iCXΩ − KXΩ2 = B, i.e. the
situation when absorbing boundary conditions are present in a matrix equation refor-
mulation, cf. Experiment 3.18.

3.5 Numerical Experiments

We present numerical examples for a finite element discretization† of the time-harmonic
elastic wave equation (3.5a)-(3.5c) in 2D. The problem setting shown in Figure 3.5
(left) is an inhomogeneous wedge problem inspired by the acoustic analogue proposed
in [104] which has been used for the demonstration of spectral analysis of Helmholtz
problems in [147]. The computational domain is Ω = [0, 600]× [0, 1000] meter. When-
ever Problem 3.1 is solved, we place a point source at (300, 0) meter and prescribe
absorbing Sommerfeld conditions on the upper boundary, cf. Figure 3.5 (middle).
Generally speaking, Problem 3.3 is easier to solve numerically. In our numerical ex-
amples we consider Problem 3.3 with a point source at the center of Ω and consider
reflecting walls on the entire boundary, cf. Figure 3.5 (right).

Numerical Experiment 3.16 (Proof-of-concept) We numerically demonstrate
the key findings of Lemma 3.8. In particular, we show that τ∗(ε,ωmin,ωmax) is inde-
pendent of the number of frequencies within [ωmin,ωmax]. Moreover, we show mesh-
independency of τ∗ and demonstrate the direct connection between the bounding circles
described in Lemma 3.8 (ii) and the convergence behavior of multi-shift GMRES ap-
plied to Problem 3.1.

†For the finite element discretization we use the Python package nutils [149].
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Figure 3.5: Numerical set-up: Material density ρ in [kg/m2] (left), and numerical
solution of Problem 3.1 at ε = 0 (middle) and Problem 3.3 with damping ε = 0.05
(right) at different frequencies. See [13] for a detailed description of the test problem.

The experiments reported in Table 3.1 are performed at fixed frequency range
and for a fixed damping parameter. The shift-and-invert preconditioner is applied
to multi-shift GMRES at the optimal seed frequency corresponding to (3.16). We
consider Nω equidistantly-spaced frequencies. The results show the expected result
that more frequencies within the same interval can be solved at no extra iterations,
and at low extra computational costs. When repeating some of the experiments
on a finer mesh we conclude mesh-independence of the optimal seed parameter, cf.
Table 3.2.

Table 3.1: Multi-shift GMRES using the optimal seed parameter τ∗ according to
Lemma 3.8, and fixed damping ε = 0.05. Discretization size of hx = hz = 5m
implies N = 48, 642 dofs.

ωmin/2π [Hz] ωmax/2π [Hz] Nω # iterations CPU time [s]

1 5
5 106 45.6

10 106 48.7

20 106 47.3

1 10
5 251 205.1

10 252 223.7

20 252 243.5

Table 3.2: Setting as in Table 3.1 and discretization size half compared to Table 3.1.

ωmin/2π [Hz] ωmax/2π [Hz] Nω # iterations CPU time [s]

1 5 10 103 189.4

1 10 10 246 770.10

We next demonstrate the close relation between the spectral bounds derived in
Lemma 3.8 and the convergence behavior of multi-shift GMRES preconditioned with
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a shift-and-invert preconditioner at optimal seed frequency τ∗. We, therefore, con-
sider the same multi-frequency setting at two different seed frequencies. Figure 3.6
shows the respective convergence curves next to the bounding circles described in
Lemma 3.8. When comparing the two choices for τ , we note that the circles corre-
sponding to the optimal τ are further away from the origin which yields a smaller
bound in Corollary 3.7. Moreover, the outlier in Figure 3.6a motivates the min-max
criterion chosen for the optimization in (3.16).
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Figure 3.6: Relation between convergence of multi-shift GMRES and spectral bounds
of Lemma 3.8. Here, we chose ε = 0.7 which yields a value for the multi-shift GMRES
bound of 0.812 at τ = (0.3 − 0.7i)ωmax which is significantly larger than 0.659

obtained at the optimum.
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Numerical Experiment 3.17 (Shifted Neumann preconditioner) In this nu-
merical experiment we study the effect of the shifted Neumann preconditioner (3.27)
on the convergence behavior of multi-shift GMRES within the two-level precondition-
ing technique described in Section 3.4.1.

A major drawback of GMRES (and its multi-shift variant) is the increasing compu-
tational work and memory requirement when the number of iterations grows. This
can be overcome by restarting Algorithm 3.1, cf. [50]. If the matrix-vector operation
is relatively cheap, polynomial preconditioners [145] are an important alternative. If
a Neumann polynomial (3.27) of degree n is applied, the number of matrix-vector
products per iteration is n + 1. The experiment in Table 3.3 shows that GMRES
iteration numbers and computation times can be reduced by approximately a factor
of 4 compared to the case without shifted Neumann preconditioner (n = 0).

In Figure 3.7 we compare convergence for different values of the seed frequency,
and Neumann preconditioners of degree n = 0 (only shift-and-invert) and n = 5.
We observe that the seed parameter τ∗ that minimizes the bound in Corollary 3.7
yields an iteration number close to the optimum. Moreover, we note in Figure 3.7a
that in the case of large damping the bound in Corollary 3.7 is more descriptive and
the choice of τ has a larger influence on the convergence of multi-shift GMRES. For
small damping (ε = 0.05) on the other hand, the parameter choice in the Neumann
preconditioner at degree n = 5 gains importance and iteration numbers can be reduced
up to a factor of 2, cf. Figure 3.7b.

Table 3.3: Multi-shift GMRES without restarting using optimal seed parameter τ∗

according to Lemma 3.8, ε = 0.05, and a Neumann polynomial preconditioner (3.27)
of degree n. We consider Nω = 10 frequencies in Problem 3.1 equally spaced within
the interval ωk/2π = [1, 10]Hz. The problem size is N = 48, 642 dofs.

n = 10 5 4 3 2 1 0
# iterations 45 64 94 80 121 150 252
CPU time [s] 52.10 46.88 64.69 47.39 73.21 89.74 213.18

Numerical Experiment 3.18 (Matrix equation (3.30) with spectral rotation)
In this experiment we use global GMRES [68] to solve the matrix equation (3.30)
preconditioned by (3.31a). The experiment demonstrates the benefit of spectral ro-
tation (3.31b) as a second-level preconditioner for the matrix equation approach de-
scribed in Section 3.4.2.

We solve Problem 3.3 reformulated as a matrix equation (3.30) using global GM-
RES [68]. As explained in Section 3.4.2 the block preconditioner P1 (3.31a) yields
the spectral situation of Lemma 3.8 in a matrix equation framework. When C = 0
the eigenvalues of the preconditioned linear operator lie on the bounding circles de-
scribed in Lemma 3.8(ii), see Figure 3.4. In Table 3.4 we evaluate the effect of the
rotation P2 (3.31b) for two different frequency ranges and for different total number
of frequencies Nω = {5, 15}. The comparison shows clearly the benefit of rotating the
spectrum. This becomes more evident when the number of frequencies is increased
from 5 to 15. Since all circles are rotated on top of each other, the clustering of the
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(b) Neumann preconditioner of degree n = 5

Figure 3.7: Optimality of the shifted Neumann preconditioner. Left: Without pre-
conditioner. Right: Neumann polynomial preconditioner at n = 5. The optimal seed
parameter τ∗ is marked with a cross, and compared against values of τ with vary-
ing imaginary part. All values are scaled by ωmax. In the present experiment, the
frequency range is fixed at fk ∈ [1, 5] Hz with Nω = 5 and 12, 322 dofs.

spectrum is the same in both cases and we observe an almost equal iteration num-
ber for global GMRES. Moreover, we consider the case where Sommerfeld boundary
conditions are present and the matrix equation in Remark 3.15 is solved. The effects
with respect to P2 are similar.

Numerical Experiment 3.19 (An interval splitting strategy) We consider an
interval I = [ωmin,ωmax] of equidistantly spaced frequencies, and assume np > 1 avail-
able parallel processors. This experiment investigates a strategy for splitting I into np
subintervals based on the choice for τ∗ according to (3.16) for each subinterval such
that a balanced load in agreement with Corollary 3.12 is achieved.

For fixed damping parameter ε > 0, the optimal seed frequency in (3.16) is a function
of the frequency range of the original problem only, i.e. τ∗ = τ(ε,ωmin,ωmax). Con-
sider first the case where np = 2 CPUs are present and the interval of frequencies can
be split into two parts, I = [ωmin,ωmax] = [ωmin,ωmid] ∪ [ωmid,ωmax] with seed pa-
rameter chosen optimally according to (3.16) for both subinterval. In Figure 3.8a this
splitting point ωmid is varied, and the largest iteration number (marked by crosses)
and the larger bound (3.13) at the respective optimum for the two subintervals is
reported. We conclude that the best splitting point is when the boundary ratios
are equal, i.e. ωmid/ωmin = ωmax/ωmid, which is obtained at the geometric mean at
ωmid = 3 Hz in Figure 3.8a. In the subsequent experiments in Figure 3.8b and 3.8c,
we report the upper interval boundary of the first subinterval and apply the previ-
ously derived splitting strategy inductively to the np − 1 remaining subintervals. In
conclusion, a splitting equidistantly on a logarithmic scale yields best results, and in
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Table 3.4: Solution of (3.30) with global GMRES: The preconditioners P1 and P2

are as defined in (3.31a) and (3.31b), respectively. Damping is introduced via the
substitution ω2

k 7→ (1− iε)ω2
k, with ε = 0.1 in this table. The considered problem has

48, 642 dofs, and global GMRES is restarted after 200 iterations.

frequency range Nω A(P−1
1 (X)) = B A(P−1

1 (P−1
2 (X))) = B

C = 0

fk ∈ [1, 3]Hz 5 220.2 (301 iter.) 93.8 (164 iter.)
fk ∈ [1, 3]Hz 15 2296.9 (702 iter.) 203.2 (171 iter.)
fk ∈ [6, 9]Hz 5 1356.5 (983 iter.) 22.2 (66 iter.)
fk ∈ [6, 9]Hz 15 no convergence 53.8 (65 iter.)

C 6= 0

fk ∈ [1, 3]Hz 5 94.9 (203 iter.) 24.8 (72 iter.)
fk ∈ [1, 3]Hz 15 502.1 (300 iter.) 66.0 (76 iter.)
fk ∈ [6, 9]Hz 5 499.4 (566 iter.) 18.5 (54 iter.)
fk ∈ [6, 9]Hz 15 1827.2 (627 iter.) 42.8 (53 iter.)

the present test case the number of iterations can be reduced by this strategy from
43 (at np = 1) to 14 (at np = 4).

Numerical Experiment 3.20 (The undamped (ε ≡ 0) case) In this experiment
we study the quality of τ∗(0) as in (3.25) for the case when no viscous damping is
present, cf. Remark 3.10. This choice is compared to choices found in different liter-
ature.

The optimality of τ∗ in (3.16) is derived for positive damping parameter ε > 0 because
only then the circles that bound the preconditioned spectra do not touch the origin,
i.e. |ck| > Rk in (3.13). The graph in Figure 3.2 (left), however, shows a smooth
dependence of τ∗(ε, smin, smax) on ε and, in particular, yield an optimal value in the
case of ε = 0 stated in Remark 3.10. In Table 3.5 we compare the seed parameter
τ∗(0) with two choices found in the literature: τ = (1 − 0.5i)ωmax in [147] and the
hand optimized value τ = (0.7 − 0.3i)ωmax used in [10, 13]. Moreover, we use an
alternative optimization criteria for minimizing the bound in Corollary 3.7 as a third
comparison value. The results in Table 3.5 show that optimality in terms of GMRES
iteration numbers is lost but, on the other hand, comparable results to the established
choices in literature are obtained.

Table 3.5: Multi-shift GMRES without restarting using different seed parameters τ
and no damping (ε = 0). We consider Nω = 10 frequencies equally spaced within the
interval ωk/2π = [5, 10]Hz. The problem size is 48, 642 dofs.

seed τ/ωmax τ∗=0.66−0.26i τ=0.7−0.3i τ=1−0.5i minτ meank(R/|ck|)
# iterations 226 201 295 300
CPU time [s] 139.5 109.3 247.6 257.6

Conclusions

We have derived an optimal seed parameter τ∗ for the shift-and-invert preconditioner
P(τ∗) = (K − τ∗M) applied to a sequence of shifted systems. For a given set of
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Figure 3.8: Effect of interval splitting for np = {2, 3, 4} when I = 2π [1, 9] Hz and
ε = 0.5 fixed. We investigate the splitting point for the first out of np subintervals.
From left to right, the splitting strategy is applied ’recursively’ to the np−1 remaining
subintervals.

frequencies sk ∈ [smin, smax] the optimal seed is an explicit function of the extreme
frequencies, and the viscous damping parameter ε, cf. (3.16) in Lemma 3.8. The opti-
mality of the parameter is derived with respect to a well-known GMRES convergence
bound that has been extended to the multi-shift setting, and in the presence of vis-
cous damping, i.e. ε > 0. Our numerical experiments, however, prove the usefulness
even for the case without damping (Experiment 3.20). Comparisons with shift-and-
invert preconditioners with parameter different from τ∗ show a slower convergence
behavior of multi-shift GMRES and, therefore, numerically prove optimality of τ∗

(see Experiment 3.16 and Experiment 3.17).

The spectral analysis that has been carried out for the derivation of τ∗ gives
valuable insight that we exploit within two applications: In Section 3.4.1, a shifted
Neumann preconditioner is derived that has minimum spectral radius. The numerical
examples in Experiment 3.17 show that an increase of the degree of the Neumann
polynomial leads to a significant reduction of GMRES iteration numbers and, hence,
of memory requirements. Moreover, numerical tests have shown that the Neumann
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preconditioner based on τ∗ yields fast convergence especially in the case of a small
damping parameter (cf. Experiment 3.17). In Section 3.4.2, we apply global GMRES
to a matrix equation reformulation of the shifted problem. Then, the bounding circles
of the shifted spectra can be rotated which yields a more favorable spectrum for the
matrix equation approach, cf. Experiment 3.18.

We have also considered the situation when more than one CPU is present, and
a sequence of shifted problems within a fixed interval [smin, smax] can be split into
subintervals that are solved simultaneously on each available CPU. In Experiment 3.19
we give strong numerical evidence that an optimal interval splitting strategy is to
split equidistantly on a logarithmic scale. With respect to future work, we would like
to point out that multi-shift GMRES with a shift-and-invert preconditioner (as in
Algorithm 3.1) fits the more general framework of rational Krylov methods [114]. The
fact that we apply a single shift-and-invert preconditioner corresponds to the situation
where a rational Krylov space with denominator degree equals to one is chosen. The
recent RKFIT algorithm [17] provides a strategy for pole selection in rational Krylov
methods and can, thus, be used for comparison. Moreover, the presented interval
splitting strategy yields (optimal) seed parameters for each subinterval and can be
exploited in the framework of multi-preconditioned GMRES for shifted systems [6].





Chapter 4
A Preconditioner for the Elastic
Wave Equation Based on
Multi-Level Sequentially
Semiseparable Matrix Computations

Abstract. In this work we present a new numerical framework for the efficient

solution of the time-harmonic elastic wave equation at multiple frequencies. We

show that multiple frequencies (and multiple right-hand sides) can be incorporated

when the discretized problem is written as a matrix equation. This matrix equation

can be solved efficiently using the preconditioned IDR(s) method. We present

an efficient and robust way to apply a single preconditioner using MSSS matrix

computations. For 3D problems, we present a memory-efficient implementation

that exploits the solution of a sequence of 2D problems. Realistic examples in two

and three spatial dimensions demonstrate the performance of the new algorithm.

Introduction

The understanding of the earth subsurface is a key task in geophysics, and Full-Wave-
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form Inversion (FWI) is a computational approach that matches the intensity of re-
flected shock waves (measurements) with simulation results in a least squares sense;
cf. [153] and the references therein for an overview of state-of-the-art FWI algo-
rithms. From a mathematical point of view, the problem of matching measurements
with simulation results leads to a PDE-constrained optimization problem where the
objective function is defined by the respective FWI approach, and the constraining
partial differential equation (PDE) is the wave equation. Since the earth is an elastic
medium, the elastic wave equation needs to be considered. In order to design an effi-
cient optimization algorithm, a fast numerical solution of the elastic wave equation is
required at every iteration of the optimization loop. This so-called forward problem
is the focus of this work.

More recently, FWI has been considered for an equivalent problem formulated in
the frequency-domain [94, 106]. The frequency-domain formulation of wave propaga-
tion has shown specific modeling advantages for both acoustic and elastic media. For
the efficient FWI, notably the waveform tomography [105, 153], a fast numerical solu-
tion of the respective time-harmonic forward problem is required. More precisely, the
forward problem requires the fast numerical solution of the discretized time-harmonic
elastic wave equation at multiple wave frequencies and for multiple source terms. In
this context, many efficient numerical solution methods have been proposed mostly
for the (acoustic) Helmholtz equation [100, 102, 104, 112]. In this work, we present an
efficient solver of the time-harmonic elastic wave equation that results from a finite
element discretization, cf. [27, 46].

Especially for large 3D problems, the efficient numerical solution with respect to
computation time and memory requirements is subject to current research. When
an iterative Krylov method is considered, the design of efficient preconditioners for
the elastic wave equation is required. In [2] a damped preconditioner for the elastic
wave equation is presented. The authors of [113] analyze a multi-grid approach for
the damped problem. Both works are extensions of the work of Erlangga et al.
[112] for the acoustic case. The recent low-rank approach of the MUMPS solver [3]
makes use of the hierarchical structure of the discrete problem and can be used as a
preconditioner, cf. [4, 157]. When domain decomposition is considered, the sweeping
preconditioner [141] is an attractive alternative.

In this work we propose a hybrid method that combines the iterative Induced
Dimension Reduction (IDR) method with an efficient preconditioner that exploits
the multilevel sequentially semiseparable (MSSS) matrix structure of the discretized
elastic wave equation on a Cartesian grid. Moreover, we derive a matrix equation
formulation that includes multiple frequencies and multiple right-hand sides, and
present a version of IDR that solves linear matrix equations at a low memory require-
ment. The paper is structured as follows: In Section 4.1, we derive a finite element
discretization for the time-harmonic elastic wave equation with a special emphasis
on the case when multiple frequencies are present. Section 4.2 presents the IDR(s)
method for the iterative solution of the resulting matrix equation. We discuss an
efficient preconditioner in Section 4.3 based on the MSSS structure of the discrete
problem. We present different versions of the MSSS preconditioner for 2D and 3D
problems in Section 4.3.2 and 4.3.3, respectively. The paper concludes with extensive
numerical tests in Section 4.4.
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4.1 Finite Element Discretization of The Time-Har-
monic Elastic Wave Equation at Multiple Fre-
quencies

In this section we present a finite element discretization of the time-harmonic elastic
wave equation with a special emphasis on the mathematical and numerical treatment
when multiple frequencies (and possibly multiple right-hand sides) are present.

4.1.1 Problem Description

The time-harmonic elastic wave equation describes the displacement vector u : Ω →
Cd in a computational domain Ω ⊂ Rd, d ∈ {2, 3}, governed by the following partial
differential equation (PDE),

−ω2
kρ(x)uk −∇·σ(uk) = s, x ∈ Ω ⊂ Rd, k = 1, ...,Nω. (4.1)

Here, ρ(x) is the density of an elastic material in the considered domain Ω that can
differ with x ∈ Ω (inhomogeneity), s is a source term, and {ω1, ...,ωNω} are multiple
angular frequencies that define Nω problems in (4.1). The stress and strain tensor
follow from Hooke’s law for isotropic elastic media,

σ(uk) := λ(x) (∇·uk Id) + 2µ(x)ε(uk), (4.2)

ε(uk) :=
1

2

(
∇uk + (∇uk)

T
)

, (4.3)

with λ,µ being the Lamé parameters (4.6). On the boundary ∂Ω of the domain Ω,
we consider the following boundary conditions,

iωkρ(x)Buk + σ(uk)n̂ = 0, x ∈ ∂Ωa, (4.4)

σ(uk)n̂ = 0, x ∈ ∂Ωr, (4.5)

where Sommerfeld radiation boundary conditions at ∂Ωa model absorption, and we
typically prescribe a free-surface boundary condition in the north of the computational
domain ∂Ωr, with ∂Ωa ∪· ∂Ωr = ∂Ω. In (4.4), B is a d× d matrix that depends on cp
and cs, B ≡ B(x) := cp(x)n̂n̂T + cs(x)̂tt̂T + cs(x)̂sŝT, with vectors {n̂, t̂, ŝ} being
normal or tangential to the boundary, respectively; cf. [2] for more details. Note
that the boundary conditions (4.4)-(4.5) can naturally be included in a finite element
approach as explained in Section 4.1.2.

We assume the set of five parameters {ρ, cp, cs,λ,µ} in (4.1)-(4.5) to be space-
dependent. The Lamé parameters λ and µ are directly related to the material den-
sity ρ and the speed of P-waves cp and speed of S-waves cs via,

µ = c2sρ, λ = ρ(c2p − 2c2s). (4.6)

All parameter functions are assumed in L1(Ω). More specifically, we interpolate data
points using Q1 basis functions.
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s = δ(Lx/2, 0)

Figure 4.1: Boundary conditions and source term for d = 2. For d = 3, the source is
for instance located at (Lx/2,Ly/2, 0)T.

4.1.2 Spline-Based Finite Element Discretization

For the discretization of (4.1)-(4.5) we follow a classical finite element approach using
the following ansatz,

uk(x) ≈
N∑
i=1

uikϕi(x), x ∈ Ω ⊂ Rd, uik ∈ C. (4.7)

In the numerical examples presented in Section 4.4 we restrict ourselves to Cartesian
grids and basis functions ϕi that are B-splines of degree p as described for instance
in [24, Chapter 2]. The number of degrees of freedom is, hence, given by

N = d
∏

i∈{x,y,z}
(ni − 1 + p), d ∈ {2, 3}, p ∈ N+, (4.8)

with ni grid points in the respective spatial direction (in Figure 4.1 we illustrate the
case where d = 2 and nx = 7,ny = 5).

Definition 4.1 (Tensor notation II, [36]) The dot product between two vector-
valued quantities u = (ux,uy), v = (vx, vy) is denoted as, u · v := uxvx + uyvy. Simi-
larly, we define the componentwise multiplication of two matrices U = [uij ],V = [vij ]
as, U : V :=

∑
i,j uijvij.

A Galerkin finite element approach applied to (4.1) yields the following weak form:
Find ϕi ∈ [H1(Ω)]d such that,

−ω2
k

N∑
i=1

uik

∫
Ω

ρ(x)ϕi ·ϕj dΩ−
N∑
i=1

uik

∫
Ω

∇·σ(ϕi) ·ϕj dΩ

=

∫
Ω

s ·ϕj dΩ, for all ϕj ∈ [H1(Ω)]d,

j = 1, ...,N , and for all source functions s ∈ [L1(Ω)]d. We exploit the boundary
conditions (4.4)-(4.5) in the following way, ∫

Ω

∇·σ(ϕi) ·ϕj dΩ

=

∫
∂Ω

σ(ϕi)ϕj · n̂ dΓ−
∫

Ω

σ(ϕi) : ∇ϕj dΩ

= −iωk
∫
∂Ωa

ρ(x)Bϕi ·ϕj dΓ−
∫

Ω

σ(ϕi) : ∇ϕj dΩ
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Note that the stress-free boundary condition (4.5) can be included naturally in a finite
element discretization by excluding ∂Ωr from the above boundary integral.

We summarize the finite element discretization of the time-harmonic, inhomoge-
neous elastic wave equation at multiple frequencies ωk by,

(K + iωkC − ω2
kM)xk = b, k = 1, ...,Nω, (4.9)

with unknown vectors xk := [u1
k, ...,uNk ]T ∈ CN consisting of the coefficients in (4.7),

and mass matrix M , stiffness matrix K and boundary matrix C given by,

[K]ij =

∫
Ω

σ(ϕi) : ∇ϕj dΩ, [M ]ij =

∫
Ω

ρϕi ·ϕj dΩ, (4.10)

[C]ij =

∫
∂Ωa

ρBϕi ·ϕj dΓ, [b]j =

∫
Ω

s ·ϕj dΩ. (4.11)

In a 2D problem (see Figure 4.1), the unknown xk contains the x-components and
the y-components of the displacement vector. When lexicographic numbering is used,
the matrices in (4.9) have the block structure

K =

[
Kxx Kxy

Kyx Kyy

]
, C =

[
Cxx Cxy
Cyx Cyy

]
, M =

[
Mxx Mxy

Myx Myy

]
,

as shown in Figure 4.3 (left) for d = 2, and Figure 4.2 (top left) for d = 3. When solv-
ing (4.9) with an iterative Krylov method, it is necessary to apply a preconditioner.
Throughout this document, we consider a preconditioner of the form

P(τ) = (K + iτC − τ2M), (4.12)

where τ is a single seed frequency that needs to be chosen with care for the range of
frequencies {ω1, ...ωNω}, cf. the considerations in [8, 119]. The efficient application of
the preconditioner (4.12) for problems of dimension d = 2 and d = 3 on a structured
domain is presented in Section 4, and the choice of τ is discussed in Section 4.4.2.

4.1.3 Reformulation as a Matrix Equation

We next describe a new approach to solve (4.9) at multiple frequencies. Therefore,
we define the block matrix X consisting of all unknown vectors, X := [x1, ..., xNω ] ∈
CN×Nω , and note that (4.9) can be rewritten as,

A(X) := KX + iCXΣ−MXΣ2 = B, (4.13)

where Σ := diag(ω1, ...,ωNω ), and with block right-hand side B := [b, ..., b]. In (4.13),
we also define the linear operator A(·) which defines the matrix equation (4.13) in
short-hand notation as A(X) = B. This reformulation gives rise to use an extension
of the IDR(s) method to solve linear matrix equations [5].

Note that an alternative approach to efficiently solve (4.9) at multiple frequencies
(Nω > 1) leads to the solution of shifted linear systems as presented in [8, Section 4.2]
and the references therein. The memory-efficient approach followed by [8] relies on
the shift-invariance property of the Krylov spaces belonging to different frequencies.
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Some restrictions of this approach like collinear right-hand sides in (4.9) and the
difficulty of preconditioner design are, however, not present in the matrix equation
setting (4.13).
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Figure 4.2: A spy plot of (4.12) for a 3D elastic problem when linear basis functions
(p = 1) are used: In the top row we show the discretized problem for lexicographic
(top left) and nodal-based ordering (top right). Appropriate zooming demonstrates
the hierarchically repeating structure of the matrix on level 2 (bottom left) and level 1
(bottom right). For level 1, we indicate the SSS data structure used in Section 4.3.1.
Here, the rank of U2 equals one.

4.2 The Induced Dimension Reduction (IDR) Method

Krylov subspace methods are an efficient tool for the iterative numerical solution of
large-scale linear systems of equations [81]. In particular, the matrices K,C,M that
typically are obtained from a discretization of the time-harmonic elastic wave equa-
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tion (4.9) are ill-conditioned and have very large dimensions, especially when high
frequencies are considered. For these reasons, the numerical solution is computation-
ally challenging, and factors like memory consumption and computational efficiency
have to be taken into account when selecting a suitable Krylov method.

The Generalized Minimum Residual (GMRES) method [118] is one of the most
widely-used Krylov method because of its rather simple implementation and optimal
convergence property. Nevertheless, GMRES is a long-recurrence Krylov method,
i.e., its requirements for memory and computation grow in each iteration which is
unfeasible when solving linear systems arising from the elastic wave equation. On the
other hand, short-recurrence Krylov methods keep the computational cost constant
per iteration; one of the most used method of this class is the Bi-conjugate gradient
stabilized (Bi-CGSTAB) method [144].

In this work we propose to apply an alternative short-recurrence Krylov method:
the Induced Dimension Reduction (IDR) method [130, 146]. IDR(s) uses recursions
of depth s+ 1, with s ∈ N+ being typically small, to solve linear systems of equations
of the form,

Ax = b, A ∈ CN×N , {x, b} ∈ CN , (4.14)

where the coefficient matrix A is a large, sparse, and in general non-Hermitian. We
mention some important numerical properties of the IDR(s) method: First, finite
termination of the algorithm is ensured with IDR(s) computing the exact solution in
N + N

s iterations in exact arithmetics. Second, Bi-CGSTAB and IDR(1) are mathe-
matically equivalent [129]. Third, IDR(s) with s > 1 often outperforms Bi-CGSTAB
for numerically difficult problems, for example, for convection-diffusion-reaction prob-
lems where the convection term is dominating, or problems with a large negative
reaction term, cf. [130] and [146], respectively.

4.2.1 IDR(s) for Linear Systems of Equations

We present a brief introduction of the IDR(s) method that closely follows [130]. In
Section 4.2.2, we explain how to use IDR(s) for solving (4.13) for multiple frequencies
in a matrix equation setting. We introduce the basic concepts of the IDR(s) method.
The IDR(s) algorithm is based on the following theorem.

Theorem 4.2 (The IDR(s) theorem) Let A be a matrix in CN×N , let v0 be any
non-zero vector in CN , and let G0 be the full Krylov subspace, G0 := KN (A, v0). Let S
be a (proper) subspace of CN such that S and G0 do not share a nontrivial invariant
subspace of A, and define the sequence:

Gj := (I − ξjA)(Gj−1 ∩ S), j = 1, 2, . . . , (4.15)

where ξj are nonzero scalars. Then it holds:

1. Gj+1 ⊂ Gj, for j ≥ 0, and,

2. dim(Gj+1) < dim(Gj), unless Gj ≡ {0}.

Proof 4.3 Can be found in [130]. �
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Exploiting the fact that the subspaces Gj are shrinking and Gj = {0} for some j,
IDR(s) solves the problem (4.14) by constructing residuals rk+1 in the subspaces
Gj+1, while in parallel, it extracts the approximate solutions xk+1. In order to illus-
trate how to create a residual vector in the space Gj+1, let us assume that the space S
is the left null space of a full rank matrix P := [p1, p2, . . . , ps], {xi}ki=k−(s+1) are

s+ 1 approximations to (4.14) and their corresponding residual vectors {ri}ki=k−(s+1)

are in Gj . IDR(s) creates a residual vector rk+1 in Gj+1 and obtains the approxima-
tion xk+1 using the following (s+ 1)-term recursions,

xk+1 = xk + ξj+1vk +

s∑
j=1

γj∆xk−j ,

rk+1 = (I − ξj+1A)vk, vk = rk −
s∑
j=1

γj∆rk−j ,

where ∆yk is the forward difference operator ∆yk := yk+1 − yk. The vector c =
(γ1, γ2, . . . , γs)

T can be obtained imposing the condition rk+1 ∈ Gj+1 by solving the
s× s linear system,

PH[∆rk−1, ∆rk−2, . . . , ∆rk−s]c = PHrk.

At this point, IDR(s) has created a new residual vector rk+1 in Gj+1. However, using
the fact that Gj+1 ⊂ Gj , rk+1 is also in Gj , IDR(s) repeats the above computation in
order to create {rk+1, rk+2, . . . , rk+s+1} in Gj+1. Once s + 1 residuals are in Gj+1,
IDR(s) is able to sequentially create new residuals in Gj+2.

4.2.2 Preconditioned IDR(s) for Linear Matrix Equations

The IDR(s) theorem 4.2 can be generalized to solve linear problems in any finite-
dimensional vector space. In particular, IDR(s) has recently been adapted to solve
linear matrix equations [5]. In this work, we use this generalization of the IDR(s)
method to solve the time-harmonic elastic wave equation at multiple frequencies.
Using the definition of the linear operator A(·) in (4.13) yields a matrix equation in
short-hand notation, A(X) = B, which is close to (4.14). Here, the block right-hand
side B equals

B := b[1, 1, . . . , 1]Nω or B := [b1, b2, . . . , bNω ]

depending whether we consider a constant source term for each frequency as in (4.1)
or allow variations.

IDR(s) for solving (4.13) uses the same recursions described in Section 4.2.1 acting
on block matrices. The main differences with the original IDR(s) algorithm of [130]
are the substitution of the matrix-vector product Ax by the application of the linear
operator A(X), and the use of Frobenius inner products, see Definition 4.4. Note
that two prominent long-recurrence Krylov methods have been generalized to the
solution of linear matrix equations in [68] using a similar approach. In Algorithm 4.1,
we present IDR(s) for solving the matrix equation (4.13) with biorthogonal residuals
(see details in [5, 146]). The preconditioner used in Algorithm 4.1 is described in the
following Section.
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Definition 4.4 (Frobenius inner product, [68]) The Frobenius inner product of
two real matrices A,B of the same size is defined as 〈A,B〉F := tr(AHB), where tr(·)
is the trace of the matrix AHB. The matrix Frobenius norm is, ‖A‖2F := 〈A,A〉F .

Algorithm 4.1 Preconditioned IDR(s) for matrix equations [5]

1: Input: A as defined in (4.13), B ∈CN×Nω , tol ∈ (0, 1), s∈N+, P ∈CN×(s×Nω),
X0∈CN×Nω , preconditioner P

2: Output: X such that ‖B −A(X)‖F /‖B‖F ≤ tol
3: G = 0 ∈ CN×s×Nω , U = 0 ∈ CN×s×Nω

4: M = Is ∈ Cs×s, ξ = 1
5: R = B −A(X0) . Apply operator (4.13)
6: while ‖R‖F ≤ tol · ‖B‖F do
7: Compute [f ]i = 〈Pi, R〉F for i = 1, . . . , s
8: for k = 1 to s do
9: Solve c from Mc = f , (γ1, . . . , γs)

T = c
10: V = R−∑s

i=k γiGi
11: V = P−1(V ) . Apply preconditioner, see Section 4.3
12: Uk = Uc + ξV
13: Gk = A(Uk) . Apply operator (4.13)
14: for i = 1 to k − 1 do
15: α = 〈Pi, Gk〉F /[M ]i,i
16: Gk = Gk − αGi
17: Uk = Uk − αUi
18: end for
19: [M ]ik = 〈Pi, Gk〉F
20: β = [f ]k/[M ]k,k

21: R = R− βGk
22: X = X + βUk
23: if k + 1 ≤ s then
24: [f ]i = 0 for i = 1, . . . , k
25: [f ]i = [f ]i − β[M ]i,k for i = k + 1, . . . , s
26: end if
27: Overwrite k-th block of G and U by Gk and Uk
28: end for
29: V = P−1(R) . Apply preconditioner, see Section 4.3
30: T = A(V ) . Apply operator (4.13)
31: ξ = 〈T ,R〉F /〈T ,T 〉F
32: ρ = 〈T ,R〉F /(‖T‖F ‖R‖F )
33: if |ρ| < ρ0 then . ρ0 = 0.7 is recommended in [128]
34: ξ = ρ0 × ξ/|ρ|
35: end if
36: R = R− ξT
37: X = X + ξV
38: end while
39: return X ∈ CN×Nω
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4.3 An MSSS-Based Preconditioner for the Elastic
Wave Equation

Semiseparable matrices [150] and the more general concept of sequentially semisepara-
ble (SSS) matrices [19, 20] are structured matrices represented by a set of generators.
Matrices that arise from the discretization of 1D partial differential equations typically
have an SSS structure [111], and submatrices taken from the strictly lower/upper-
triangular part yield generators of low rank. Multiple applications from different areas
can be found [30, 70, 110] that exploit this structure. Multilevel sequentially sem-
iseparable (MSSS) matrices generalize SSS matrices to the case when d > 1. Again,
discretizations of higher-dimensional PDEs give rise to matrices that have an MSSS
structure [107], and the multilevel paradigm yields a hierarchical matrix structure with
MSSS generators that are themselves MSSS of a lower hierarchical level. This way,
at the lowest level, generators are SSS matrices. The advantages of Cartesian grids
in higher dimensions and the resulting structure of the corresponding discretization
matrices depicted in Figure 4.2 is directly exploited in MSSS matrix computations.
For unstructured meshes we refer to [161] where hierarchically semiseparable (HSS)
matrices are used. MSSS preconditioning techniques were first studied for PDE-
constrained optimization problems in [107] and later extended to computational fluid
dynamics problems [108]. In this work, we apply MSSS matrix computations to
precondition the time-harmonic elastic wave equation. Appropriate splitting of the
3D elastic operator leads to a sequence of 2D problems in level-2 MSSS structure. An
efficient preconditioner for 2D problems is based on model order reduction of level-1
SSS matrices.

4.3.1 Definitions and Basic SSS Operations

We present the formal definition of an SSS matrix used on 1D level in Definition 4.5.

Definition 4.5 (SSS matrix structure, [20]) Let A be an n × n block matrix in
SSS structure such that A can be written in the following block-partitioned form,

Aij =


UiWi+1 · · ·Wj−1V

H
j , if i < j,

Di, if i = j,
PiRi−1 · · ·Rj+1Q

H
j , if i > j.

(4.16)

Here, the superscript ‘H’ denotes the conjugate transpose of a matrix. The matrices
{Us, Ws, Vs, Ds, Ps, Rs, Qs}ns=1 are called generators of the SSS matrix A, with
their respective dimensions given in Table 4.1. As a short-hand notation for (4.16),
we use A = SSS(Ps,Rs,Qs,Ds,Us,Ws,Vs).

The special case of an SSS matrix when n = 4 is presented in the appendix.

Table 4.1: Generators sizes for the SSS matrix A in Definition 4.5. Note that, for
instance, m1 + ... +mn equals the dimension of A.

Ui Wi Vi Di Pi Ri Qi

mi × ki ki−1 × ki mi × ki−1 mi ×mi mi × li li−1 × li mi × li+1
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In general, every matrix can be represented in SSS format. In Figure 4.2 (bottom
right) we show that the 1D level of the elastic operator is tridiagonal if p = 1. There-
fore, diagonal blocks Di are copies of the 1D operator, and off-diagonal blocks can,
for instance, be represented by the product of rank-p matrices, U2V

H
3 , where the last

element of U2 is identical to the respective entry of the 1D operator and V3 is the first
unit vector. Basic operations such as addition, multiplication and inversion are closed
under SSS structure and can be performed in linear computational complexity if ki
and li in Table 4.1 are bounded by a constant. The rank of the off-diagonal blocks,
formally defined as the semiseparable order in Definition 4.6, plays an important role
in the computational complexity analysis of SSS matrix computations.

Definition 4.6 (Semiseparable order, [35]) Let A be an n × n block matrix in
SSS structure satisfying Definition 4.5. We use a colon-style notation: A(i : j, k : `)
selects rows of blocks from i to j and columns of blocks from k to ` of the SSS matrix A,
i.e. A(2 :2, 3 :3) = U2V

H
3 . Let

rank A(s+ 1:n, 1 :s) =: ls, s = 1, 2, . . . ,n− 1, and let further,

rank A(1 :s, s+ 1:n) =: us, s = 1, 2, . . . ,n− 1.

Setting rl := max{ls} and ru := max{us}, we call rl the lower semiseparable order
and ru the upper semiseparable order of A, respectively.

If the upper and lower semiseparable order are bounded by say r∗, i.e., {rl, ru} ≤
r∗, then the computational cost for the SSS matrix computations is of O((r∗)3n)
complexity [20], where n is the number of blocks of the SSS matrix as introduced in
Definition 4.5. We will refer to r∗ as the maximum off-diagonal rank. Matrix-matrix
operations are closed under SSS structure, but performing SSS matrix computations
will increase the semiseparable order, cf. [20]. We use model order reduction in the
sense of Definition 4.8 in order to bound the semiseparable order.

Using the aforementioned definition of semiseparable order, we next introduce the
following lemma to compute the (exact) LU factorization of an SSS matrix.

Lemma 4.7 (LU factorization of an SSS matrix) Let A = SSS(Ps,Rs,Qs,Ds,
Us,Ws,Vs) be given in generator form with semiseparable order (rl, ru). Then the
factors of an LU factorization of A are given by the following generators representa-
tion,

L = SSS(Ps,Rs, Q̂s,D
L
s , 0, 0, 0),

U = SSS(0, 0, 0, DU
s , Ûs,Ws,Vs).

The generators of L and U are computed by Algorithm 4.2. Moreover, L has sem-
iseparable order (rl, 0), and U has semiseparable order (0, ru).

Definition 4.8 (Model order reduction of an SSS matrix) Let A = SSS(Ps,
Rs,Qs,Ds,Us,Ws,Vs) be an SSS matrix with lower order numbers ls and upper order
numbers us. The SSS matrix Ã = SSS(P̃s, R̃s, Q̃s,Ds, Ũs, W̃s, Ṽs) is called a reduced
order approximation of A, if ‖A − Ã‖2 is small, and for the lower and upper order
numbers it holds, l̃s < ls, ũs < us for all 1 ≤ s ≤ n− 1.
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Algorithm 4.2 LU factorization and inversion of an SSS matrix A [19, 150]

1: Input: A = SSS(Ps,Rs,Qs,Ds,Us,Ws,Vs) in generator form
2: // Perform LU factorization
3: D1 =: DL

1 D
U
1 . LU factorization on generator level

4: Let Û1 := (DL
1 )−1U1, and Q̂1 := (DL

1 )−HQ1

5: for i = 2 : n− 1 do
6: if i = 2 then
7: Mi := Q̂H

i−1Ûi−1

8: else
9: Mi := Q̂H

i−1Ûi−1 +Ri−1Mi−1Wi−1

10: end if
11:

(
Di − PiMiV

H
i

)
=: DL

i D
U
i . LU factorization of generators

12: Let Ûi := (DL
i )−1(Ui − PiMiWi), and

13: let Q̂i := (DU
i )−H(Qi − ViMH

i R
H
i )

14: end for
15: Mn := Q̂H

n−1Ûn−1 +Rn−1Mn−1Wn−1

16:
(
Dn − PnMnV

H
n

)
=: DL

nD
U
n . LU factorization of generators

17: // Perform inversion
18: L := SSS(Ps,Rs, Q̂s,D

L
s , 0, 0, 0)

19: U := SSS(0, 0, 0, DU
s , Ûs,Ws,Vs)

20: A−1 = U−1L−1 . SSS inversion & matrix-matrix multiplication (see App. B)

4.3.2 Approximate Block-LU Decomposition Using MSSS Com-
putations for 2D Problems

Similar to Definition 4.5 for SSS matrices, the generators representation for MSSS
matrices (level-k SSS matrices) is given in Definition 4.9.

Definition 4.9 (MSSS matrix structure, [107]) The matrix A is said to be a
level-k SSS matrix if it has a form like (4.16) and all its generators are level-(k − 1)
SSS matrices. The level-1 SSS matrix is the SSS matrix that satisfies Definition 4.5
We call A to be in MSSS matrix structure if k > 1.

Most operations for SSS matrices can directly be extended to MSSS matrix com-
putations. In order to perform a matrix-matrix multiplication of two MSSS ma-
trices in linear computational complexity, model order reduction which is studied
in [20, 107, 108] is necessary to keep the computational complexity low. The precon-
ditioner (4.12) for a 2D elastic problem is of level-2 MSSS structure. We present a
block-LU factorization of a level-2 MSSS matrix in this Section. Therefore, model
order reduction is necessary which results in an approximate block-LU factorization.
This approximate factorization can be used as a preconditioner for IDR(s) in Algo-
rithm 4.1. On a two-dimensional Cartesian grid, the preconditioner (4.12) has a 2×2
block structure as presented in Figure 4.3 (left).

Definition 4.10 (Permutation of an MSSS matrix, [107]) Let P(τ) be a 2× 2
level-2 MSSS block matrix arising from the FEM discretization of (4.12) using linear



Section 4.3 MSSS-Based Preconditioners for the Elastic Wave Equation 83

B-splines (p = 1),

P(τ) =

[
P11 P12

P21 P22

]
∈ C2nxny×2nxny , (4.17)

with block entries being level-2 MSSS matrices in generator form,

P11 = MSSS(P 11
s ,R11

s ,Q11
s ,D11

s ,U11
s ,W 11

s ,V 11
s ), (4.18a)

P12 = MSSS(P 12
s ,R12

s ,Q12
s ,D12

s ,U12
s ,W 12

s ,V 12
s ), (4.18b)

P21 = MSSS(P 21
s ,R21

s ,Q21
s ,D21

s ,U21
s ,W 21

s ,V 21
s ), (4.18c)

P22 = MSSS(P 22
s ,R22

s ,Q22
s ,D22

s ,U22
s ,W 22

s ,V 22
s ), (4.18d)

where 1 ≤ s ≤ nx. Note that all generators in (4.18a)-(4.18d) are SSS matrices
of (fixed) dimension ny. Let {ms}ns=1 be the dimensions of the diagonal generators
of such an SSS matrix, cf. Table 4.1, with

∑n
s=1ms = ny. Then there exists a

permutation matrix Ψ, ΨΨT = ΨTΨ = I, given by

Ψ =

[
Inx ⊗

[
Ψ1D

0

]
Inx ⊗

[
0

Ψ1D

]]
, (4.19)

where

Ψ1D :=

[
blkdiag

([
Ims
0

])n
s=1

blkdiag

([
0
Ims

])n
s=1

]
,

such that P2D(τ) = ΨTP(τ)Ψ is of global MSSS level-2 structure.

We illustrate the effect of the permutation matrix Ψ in Figure 4.3. For a ma-
trix (4.12) that results from a discretization of the 2D time-harmonic elastic wave
equation, P2D is of block tri-diagonal MSSS structure.

Corollary 4.11 (Block tri-diagonal permutation) Consider in Definition 4.10
the special case that the block entries in (4.17) are given as,

P11 = MSSS(P 11
s , 0, I,D11

s ,U11
s , 0, I), (14.20a)

P12 = MSSS(P 12
s , 0, I,D12

s ,U12
s , 0, I), (14.20b)

P21 = MSSS(P 21
s , 0, I,D21

s ,U21
s , 0, I), (14.20c)

P22 = MSSS(P 22
s , 0, I,D22

s ,U22
s , 0, I), (14.20d)

with rectangular matrix I = [I, 0]. Then the matrix ΨTP(τ)Ψ is of block tri-diagonal
MSSS structure.

Proof 4.12 This result follows from formula (2.13) of Lemma 2.4 in the original
proof [107] when generators Rijs = W ij

s ≡ 0 for i, j ∈ {1, 2}. �
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Figure 4.3: A spy plot of P(τ) for the wedge problem (left) and ΨTP(τ)Ψ (right)
for d = p = 2, and nnz=100,587 in both cases. Clearly, the permutation leads to a
reduction in bandwidth, and the permuted matrix is block tri-diagonal.

If the matrix (4.17) is sparse, it is advisable to use a sparse data structure on
generator-level for (14.20a)-(14.20d) as well. Because of Corollary 4.11, the permuted
2D preconditioner can be written as,

P2D = ΨTP(τ)Ψ =


P1,1 P1,2

P2,1 P2,2 P2,3

. . .
. . .

. . .

. . . Pnx,nx

 (4.21)

with block entries Pi,j in SSS format according to Definition 4.5, compare Figure 4.3
(right). We perform a block-LU factorization of the form P2D = LSU , with

Li,j =

{
I if i = j

Pi,jS
−1
j if i = j + 1

, Ui,j =

{
I if j = i

S−1
i Pi,j if j = i+ 1

, (4.22)

and Schur complements given by

Si =

{
Pi,i if i = 1

Pi,i − Pi,i−1S
−1
i−1Pi−1,i if 2 ≤ i ≤ nx.

(4.23)

The Schur complements in (4.22)-(4.23) are SSS matrices and inverses can be
computed with Algorithm 4.2. From Lemma 4.7, we conclude that this does not
increase the respective off-diagonal ranks. However, in (4.22)-(4.23), we also need
to perform matrix-matrix multiplications and additions of SSS matrices which lead
to an increase in rank, cf. [20] and Appendix B. Therefore, we apply model order
reduction in the sense of Definition 4.8 at each step i of the recursion (4.23) in order
to limit the off-diagonal rank. An algorithm that limits the off-diagonal ranks to a
constant, say r∗, can be found in [107]. This leads to approximate Schur complements
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and, hence, an inexact LU factorization. In Experiment 4.15, we show that for small
off-diagonal ranks this approach results in a very good preconditioner for 2D elastic
problems.

4.3.3 Block SSOR Splitting Using MSSS Computations for 3D
Problems

For 3D problems, we consider a nodal-based FEM discretization of (4.12) with nz
being the outermost dimension, as shown in Figure 4.4 for different order of B-splines.
In order to derive a memory-efficient algorithm for 3D problems, we consider the
matrix splitting,

P3D(τ) = L + Ŝ + U , Ŝ = blkdiag(Ŝ1, ..., Ŝnz ), (4.24)

where L and U are the (sparse) strictly lower and strictly upper parts of P3D(τ), and
Ŝ is a block-diagonal matrix with blocks Ŝi being in level-2 MSSS structure. This
data structure is illustrated in Figure 4.5a.

(a) p = 1 (b) p = 2 (c) p = 3

Figure 4.4: Nodal-based discretization of P3D(τ) in 3D for different degrees p of FEM
basis function.

According to [117, Section 4.1.2], the SSOR preconditioner based on the split-
ting (4.24) is given by,

P3D(τ) =
1

η(2− η)
(η L + Ŝ)Ŝ−1(η U + Ŝ)

which for η = 1 equals,

P3D(τ) = (LŜ−1 + I)Ŝ(Ŝ−1U + I). (4.25)

In (4.25) we note that this decomposition coincides with the 2D approach (4.22)-
(4.23) when the term “Pi,i−1S

−1
i−1Pi−1,i” in the Schur complements (4.23) is neglected.

This choice avoids a rank increase due to multiplication and addition, but yields a
worse preconditioner than in 2D. The block entries Ŝi ,i = 1, ..,nz, are in level-2
MSSS structure and, hence, formula (4.22)-(4.23) can be applied sequentially for the
inverses that appear in (4.25). In order to invert level-1 SSS matrices that recursively
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Table 4.2: Overview of algorithms applied at different levels for the (approximate)
inversion of the preconditioner (4.25).

Level Algorithm for (·)−1 Datatype
3D MSSS SSOR decomposition (4.25) sparse + L2 SSS

2D MSSS Schur (4.22)-(4.23) & MOR tridiag. L2 SSS

1D SSS Algorithm 4.2 L1 SSS (4.16)
generator LAPACK routines set of sparse matrices

appear in (4.23), we use Algorithm 4.2. On the generator level, we use suitable LAPACK
routines; cf. Table 4.2 for an overview of the different algorithms used at each level.

We illustrate the data structure of the preconditioner (4.25) in 3D for the case of
linear B-splines (p = 1) in Figure 4.5. On level-3, we use a mixed data format that is
most memory-efficient for the splitting (4.24). Since only diagonal blocks need to be
inverted, we convert those to level-2 MSSS format, and keep the off-diagonal blocks
of L and U in sparse format.

coo

coo
. . .

coo

. . .
coo

L2

L2
. . .

L2∅

∅

(a) L3 SSS

SSS
. . .

. . .

SSS∅

∅

(b) L2 SSS, definition 4.9

. . .
. . .

. . .

...
. . .

Dn

U1V
H

2

P2Q
H
1

D1

D2

(c) SSS, definition 4.5

Figure 4.5: Nested data structure for the preconditioner (4.21) after permutation for
d = 3 and p = 1. With ’coo’ we abbreviate the coordinate-based sparse data structure
as used, for instance, in [116].

For p > 1, we apply the permutation of Definition 4.10 on each diagonal block
of Ŝ, cf. Figure 4.6. This way, the Schur decomposition described in Section 4.3.2
can be applied for inverting block tri-diagonal level-2 MSSS matrices.

4.3.4 Memory Analysis for the 2D and 3D MSSS Precondi-
tioner

We finish our description of MSSS preconditioners with a memory analysis of the
suggested algorithms described for 2D problems in Section 4.3.2, and for 3D problems
in Section 4.3.3, respectively. The following Corollary 4.13 shows that in both cases
we obtain linear memory requirements in terms of the problem size (4.8).

Corollary 4.13 (Linear memory requirement) Consider p = 1 and a three-di-
mensional problem of size nx × ny × nz. For simplicity, we assume on the generator-
level mi ≡ m, and the off-diagonal ranks of the inverse Schur complements Si in (4.23)
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(a) Ŝi, 1 ≤ i ≤ nx
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(b) ΨTŜiΨ

Figure 4.6: Permutation on level-2 leads to a block tri-diagonal level-2 MSSS matrix
for p > 1.

being limited by ki = li ≡ r∗. The grid size in y-direction on level-1 implies n gen-
erators via n = dnym

−1, with m being a constant and d ∈ {2, 3}. The memory
requirement of the preconditioners P2D and P3D presented in Section 4.3.2 and Sec-
tion 4.3.3, respectively, is linear in the respective problem dimension (4.8).

Proof 4.14 Consider the preconditioner P2D = LSU given by (4.22)-(4.23). Be-
sides blocks of the original operator, an additional storage of nx inverse Schur com-
plements S−1

i in SSS format is required,

mem(P−1
2D , r∗) = mem(P2D) +

nx∑
i=1

mem(S−1
i , r∗) ∈ O(nxny).

The approximate Schur decomposition described in Section 4.3.2 allows dense, full
rank diagonal generators Di, 1 ≤ i ≤ n, of size m × m, and limits the rank of all
off-diagonal generators by r∗ using model order reduction techniques:

mem(S−1
i , r∗) = n ·m2︸ ︷︷ ︸

∼Di

+ 4(n− 1)mr∗︸ ︷︷ ︸
∼{Ui,Vi,Pi,Qi}

+ 2(n− 2)r∗r∗︸ ︷︷ ︸
∼{Wi,Ri}

∈ O(ny).

Concerning the memory requirement for storing P2D in MSSS format, we first note
that the permutation described in Corollary 4.11 does not affect the memory consump-
tion. Since we use sparse generators in (14.20a)-(14.20d), the memory requirement
is of the same order as the original, sparse matrix (4.12) obtained from the FEM
discretization.

For 3D problems, we suggest the usage of P3D as in (4.25) based on the split-
ting (4.24). For the data structure, we keep the strictly lower and upper diagonal
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Ŝ1

Ŝ2

Ŝ3

Ŝnz

z

Figure 4.7: Schematic illustration: The diagonal blocks of Ŝ in (4.24) correspond to
a sequence of nz 2D problems in the xy−plane.

parts in sparse format and convert the diagonal blocks to level-2 MSSS format, cf.
Figure 4.7,

mem(P−1
3D , r∗) = nz · mem(P−1

2D , r∗) + nnz(L) + nnz(U)

∈ O(nxnynz).

�

Note that the case p > 1 also yields a linear memory requirement but is, for simplicity,
not addressed here.

4.4 Numerical Experiments

We present numerical example for the two-dimensional, elastic Marmousi-II model [85]
as well as for a three-dimensional elastic wedge problem which has been inspired by
the well-known acoustic test case introduced in [75, 104] for 2D and 3D, respectively.
In the examples, we restrict ourselves to Cartesian grids with fixed discretization
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size h ≡ hx = hy = hz. Depending on the specific problem parameters, the maximum
frequency we allow is restricted by,

fmax <
minx∈Ω{cp, cs}

ppw · h , ppw = 20, (4.26)

where in the following experiments a minimum of 20 points per wavelength (ppw) is
guaranteed, and ωk = 2πfk.

All numerical examples presented in this section have been implemented in FOR-
TRAN 90 using the GNU/gfortran compiler running over GNU/Debian Linux, and
executed on a computer with 4 CPUs Intel I5 with 32 GB of RAM.

4.4.1 Proof of Concepts

We begin our numerical tests with a sequence of experiments performed on an aca-
demic two-dimensional wedge problem described in Figure 4.8. The aim of these first
experiments is to prove the following concepts for the 2D algorithm introduced in
Section 4.3.2:

• Demonstrate the dependency of the iterative solution method on the maximum
off-diagonal rank, r∗ = max{rl, ru}. In Experiment 4.15 we show that a small
value of r∗ leads to a very good preconditioner in terms of number of Krylov
iterations.

• Show that the 2D algorithm yields linear computational complexity when all
problem parameters are unchanged and the grid size doubles (Experiment 4.16).

• In Experiments 4.17 and 4.18, we evaluate the frequency dependency of the
MSSS-preconditioner (4.12) when τ 6= ω. This is in particular important
when multiple frequencies in a matrix equation framework are considered in
Section 4.4.2.

We perform parameter studies on a two-dimensional slice (xz-plane) of the wedge

problem described in Figure 4.14. The values of ρ, cp and cs in the respective layers are
given in Table 4.3, and the considered computational domain Ω = [0, 600]× [0, 1000]
meters is shown in Figure 4.8.

Table 4.3: Parameter configuration of the elastic wedge problem. The Lamé parame-
ters can be computed via (4.6).

Parameter Layer #1 Layer #2 Layer #3
ρ[kg/m3] 1800 2100 1950
cp[m/s] 2000 3000 2300
cs[m/s] 800 1600 1100

In the first set of experiments, we restrict ourselves to the single-frequency case,
Nω = 1. The discrete problem is, thus, given by,

(K + iωC − ω2M)x = b,

with a preconditioner that approximates the original operator, P(τ) ≈ (K + iτC −
τ2M), τ = ω, by taking low-rank approximations in the block-LU factorization.
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Figure 4.8: 2D elastic wedge problem used for parameter study: Speed of S-waves in
m/s (left) and real part of z-component of displacement vector at f = 16 Hz (right).

Numerical Experiment 4.15 (Off-diagonal rank) This experiment evaluates the
performance of the MSSS-preconditioner (4.21) for 2D problems when the maximal
off-diagonal rank r∗ is increased.

In Experiment 4.15, we apply the approximate block-LU decomposition (4.22)-(4.23)
as described in Section 4.3.2 to the 2D wedge problem at the frequencies f = 8 Hz
and f = 16 Hz. The maximum off-diagonal rank r∗ = max{rl, ru} of the Schur com-
plements (4.23) is restricted using model order reduction techniques, cf. [107]. The
dimension of the diagonal constructors has been chosen to be mi = 40, cf. Table 4.1.
Figure 4.9 shows the convergence behavior of preconditioned IDR(4) (Algorithm 4.1
with Nω = 1) and preconditioned BiCGStab [144]. We note that even in the high-
frequency case, an off-diagonal rank of r∗ = 10 leads to a very efficient preconditioner,
and an (outer) Krylov method that converges within at most 40 iterations to a residual
tolerance tol=10e-8. Moreover, we observe that IDR(s) outperforms BiCGStab in
the considered example when the same preconditioner is applied. For a rank r∗ > 15,
we observe convergence within very few iterations.

Numerical Experiment 4.16 (Computational complexity in 2D) The inexact
block-LU factorization yields linear computational complexity when applied as a pre-
conditioner within MSSS-preconditioned IDR(s), demonstrated for the 2D wedge prob-
lem.

In our second numerical experiment, the maximum off-diagonal rank is fixed to
r∗ = 15 such that very few IDR iterations are required, and the computational costs
in Figure 4.10 are dominated by the MSSS preconditioner. We solve the 2D wedge
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problem at frequency 8 Hz for different mesh sizes and a finite element discretization
with B-splines of degree p = {1, 2}.
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Figure 4.9: Number of Krylov iterations when the maximum off-diagonal rank of the
inverse Schur complements is restricted to r∗.

In Figure 4.10, the CPU time is recorded for different problem sizes: The mesh
size h is doubled in both spatial directions such that the number of unknowns quadru-
ples according to (4.8). From our numerical experiments we see that the CPU time
increases by a factor of ∼ 4 for both, linear and quadratic, splines. This gives strong
numerical evidence that the 2D MSSS computations are performed in linear compu-
tational complexity.

Numerical Experiment 4.17 (Constant points per wavelength) Convergence
behavior of MSSS-preconditioned IRD(s) when the problem size and wave frequency
are increased simultaneously.

In the previous example, the wave frequency is kept constant while the problem size
is increased which is of little practical use due to oversampling. We next increase
the wave frequency and the mesh size simultaneously such that a constant number of
points per wavelength, ppw = 20, is guaranteed. In Table 4.4, we use the freedom in
choosing the maximum off-diagonal rank parameter r∗ such that the overall precon-
ditioned IDR(s) algorithm converges within a total number of iterations that grows
linearly with the frequency. This particular choice of r∗ shows that the MSSS precon-
ditioner has comparable performance to the multi-grid approaches in [101, 113] where
the authors numerically prove O(n3) complexity for 2D problems of size nx = ny ≡ n.

The off-diagonal rank parameter r∗ can on the other hand be used to tune the
preconditioner in such a way that the number of IDR iterations is kept constant for
various problem sizes. In Table 4.5, we show that a constant number of ∼ 30 IDR
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Figure 4.10: Linear computational complexity of preconditioned IDR(4) for the 2D
wedge problem at f = 8 Hz.

Table 4.4: Performance of the MSSS preconditioner when problem size and frequency
are increased simultaneously such that ppw = 20 and tol=10e-8: O(n3) complexity.

f h[m] r∗ MSSS IDR(4) total CPU time
4 Hz 10.0 5 0.55 sec 16 iter. 0.71 sec
8 Hz 5.0 7 2.91 sec 33 iter. 4.2 sec

16 Hz 2.5 10 15.3 sec 62 iter. 31.8 sec
32 Hz 1.25 16 95.4 sec 101 iter. 242.5 sec

iterations can be achieved by a moderate increase of r∗ which yields an algorithm
that is nearly linear.

Numerical Experiment 4.18 (Quality of P2D(τ) when τ 6= ω) Single-frequency
experiments when seed frequency differs from the original problem.

This experiments bridges to the multi-frequency case. We consider single-frequency
problems at f ∈ {2, 3, 4, 5} Hz, and vary the parameter τ of the preconditioner (4.21).
The off-diagonal rank r∗ is chosen sufficiently large such that fast convergence is ob-
tained when τ = ω. From Figure 4.11 we conclude that the quality of the precondi-
tioner heavily relies on the seed frequency, and a fast convergence of preconditioned
IDR(4) is only guaranteed when τ is close to the original frequency.

4.4.2 The Elastic Marmousi-II Model

We now consider the case when Nω > 1, and the matrix equation,

KX + iCXΣ−MXΣ2 = B, X ∈ CN×Nω , (4.27)
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Table 4.5: Performance of the MSSS preconditioner when problem size and frequency
are increased simultaneously such that ppw = 20 and tol=10e-8: Constant number
of iterations.

f h[m] r∗ MSSS IDR(4) total CPU time
4 Hz 10.0 3 0.50 sec 29 iter. 0.83 sec
8 Hz 5.0 7 2.91 sec 33 iter. 4.2 sec

16 Hz 2.5 11 16.9 sec 27 iter. 24.5 sec
32 Hz 1.25 18 107.1 sec 33 iter. 163.2 sec
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Figure 4.11: Number of iterations of preconditioned IDR(s) when τ 6= ω in (4.21).
We perform the experiment for different frequencies, and keep a constant grid size
h = 5m and residual tolerance tol = 10e-8.

is solved. Note that this way we can incorporate multiple wave frequencies in the
diagonal matrix Σ = diag(ω1, ...,ωNω ), and different source terms lead to a block
right-hand side of the form B = [b1, ..., bNω ]. When multiple frequencies are present,
the choice of seed frequency τ is crucial as we demonstrate for the Marmousi-II

problem in Experiment 4.20. We solve the matrix equation (4.27) arising from the re-
alistic Marmousi-II problem [85]. We consider a subset of the original computational
domain, Ω = [0, 4000]× [0, 1850]m, as suggested in [113], cf. Figure 4.13.

Numerical Experiment 4.19 (Marmousi-II at multiple right-hand sides) Per-
formance of the MSSS-preconditioned IDR(s) method for the two-dimensional, elastic
Marmousi-II problem when multiple source locations are present.

We consider the Marmousi-II problem depicted in Figure 4.13 at h = 5m and fre-
quency f = 2 Hz. We present the performance of MSSS-preconditioned IDR(4) for Nω
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equally-spaced source locations (right-hand sides) in Table 4.6. The CPU time re-
quired for the preconditioner as well as the iteration count is constant when Nω > 1
because we consider a single frequency. The overall wall clock time, however, scales
better than Nω due to the efficient implementation of block matrix-vector products
in the IDR algorithm. The experiment for Nω = 20 shows that there is an optimal
number of right-hand sides for a single-core algorithm.

Table 4.6: Numerical experiments for the Marmousi-II problem at f = 2 Hz using a
maximum off-diagonal rank of r∗ = 15.

# RHSs MSSS fact. [sec] IDR(4) [sec]
1 60.2 8.18 (8 iter.)
5 60.2 25.0 (8 iter.)
10 60.1 43.5 (8 iter.)
20 60.3 108.3 (8 iter.)

Numerical Experiment 4.20 (Marmousi-II at multiple frequencies) Perfor-
mance of MSSS-preconditioned IDR(s) for the two-dimensional Marmousi-II problem
at multiple frequencies.
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Figure 4.12: Total CPU times of MSSS-IDR(4) for Nω > 1 frequencies equally-spaced
within a fixed range. Additional scaling (dashed lines) following [9] improves conver-
gence, and allows for larger frequency ranges.

In Experiment 4.20, we consider a single source term located at (Lx/2, 0)T and Nω
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frequencies equally-spaced in the intervals fk ∈ [2.4, 2.8] Hz and fk ∈ [2.0, 4.0] Hz.
The seed frequency is chosen at τ = (1− 0.5i)ωmax for which we recorded the best
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Figure 4.13: Speed of S-waves in m/s (top), and real part of the z-component of the
displacement vector in frequency-domain at f = 4 Hz (middle) and f = 6 Hz (bottom)
for the Marmousi-II model, cf. [85] for a complete parameter set. The source location
is indicated by the symbol ’O’.

convergence behavior. When the number of frequencies is increased, we observe an
improved performance compared to an extrapolation of the Nω = 2 case. We also
observed that the size of interval in which the different frequencies range is cru-
cial for the convergence behavior. In [9], we describe how the convergence of global
GMRES [68] can be improved by scaling the k-th column of the block unknown X by
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the factor e−iϕk . Spectral analysis shows that the angles ϕk can be chosen such that
the spectrum of the preconditioned operator is rotated and convergence is improved,
cf. [9]. In the present case of global IDR(s) (Algorithm 4.1) combined with an inexact
MSSS preconditioner (4.21) we record a reduction to 60% of the CPU time when
spectral rotation is applied to the Nω = 10 case, cf. Figure 4.12.

4.4.3 A Three-Dimensional Elastic Wedge Problem

The wedge problem with parameters presented in Table 4.3 is extended to a third
spatial dimension, resulting in Ω = [0, 600]× [0, 600]× [0, 1000] ⊂ R3.

Figure 4.14: Left: Parameter configuration of the elastic wedge problem for d = 3
according to Table 4.3. Right: Numerical solution of <(uz) at f = 4Hz.

Numerical Experiment 4.21 (A 3D elastic wedge problem) A three-dim- en-
sional, inhomogeneous elastic wedge problem with physical parameters specified in Ta-
ble 4.3 is solved using the SSOR-MSSS preconditioner described in Section 4.3.3.

Similar to Experiment 4.17, we consider a constant number of 20 points per wave-
length, and increase the wave frequency from 2Hz to 4Hz while doubling the number
of grid points in each spatial direction. In Figure 4.15 we observe a factor of ∼ 4
which numerically indicates a complexity of O(n5) for 3D problems. Moreover, we
note that IDR outperforms BiCGStab in terms of number of iterations. The corre-
sponding CPU times are presented in Table 4.7: From the previous analysis, a factor
of ∼ 32 for the overall CPU times is expected since the number of unknowns in three
spatial directions is doubled (linear complexity yields a factor of 8), and Figure 4.15
motivates an additional factor of 4 in iteration numbers.
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Figure 4.15: Convergence history of different Krylov methods preconditioned with the
SSOR-MSSS preconditioner (4.25) for the 3D wedge problem of Figure 4.14. We
indicate (approximate) slopes based on a linear fit of the convergence curves.

Table 4.7: Total CPU times in seconds corresponding to the convergence plots in
Figure 4.15. Note that BiCGStab at f = 4 Hz is stopped after 1, 000 iterations, cf.
Figure 4.15.

frequency BiCGStab IDR(4) IDR(16)
f = 2 Hz 144.5 95.5 91.3

f = 4 Hz 4430.7 3536.4 3100.5

Conclusions

We present an efficient hybrid method for the numerical solution of the inhomogeneous
time-harmonic elastic wave equation. We use an incomplete block-LU factorization
based on MSSS matrix computations as a preconditioner for IDR(s). The presented
framework further allows to incorporate multiple wave frequencies and multiple source
locations in a matrix equation setting (4.13). The suggested MSSS preconditioner is
conceptional different for 2D and 3D problems:

• We derive an MSSS permutation matrix (4.19) that transforms the 2D elastic
operator into block tridiagonal level-2 MSSS matrix structure. This allows the
application of an approximate Schur factorization (4.22)-(4.23). In order to a-
chieve linear computational complexity, the involved SSS operations (level-1) are
approximated using model order reduction techniques that limit the off-diagonal
rank.

• A generalization to 3D problems is not straight-forward because no model order
reduction algorithms for level-2 MSSS matrices are currently available [107]. We
therefore suggest the SSOR splitting (4.25) where off-diagonal blocks are treated
as sparse matrices and diagonal blocks resemble a sequence of 2D problems in
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level-2 MSSS structure.

We present a series of numerical experiments on a 2D elastic wedge problem (Fig-
ure 4.8) that prove theoretical concepts. In particular, we have numerically shown
that a small off-diagonal rank r∗ ∼ 10 yields a preconditioner such that IDR(s) con-
verges within very few iterations (Experiment 4.15).

Further numerical experiments for 2D elastic problems are performed on the real-
istic Marmousi-II data set. The newly derived matrix equation approach shows com-
putational advantages when multiple right-hand sides (Experiment 4.19) and multiple
frequencies (Experiment 4.20) are solved simultaneously.

In Corollary 4.13, we prove that the MSSS preconditioner has linear memory re-
quirements for 2D and 3D problems. The overall computational complexity is investi-
gated for the case of a constant number of wavelength, i.e. the number of grid points
n in one spatial direction in linearly increased with the wave frequency. Numerical
experiments show O(n3) complexity for 2D (Experiment 4.17) and O(n5) complexity
for 3D (Experiment 4.21) problems. The 3D preconditioner solves a sequence of 2D
problems and can be parallelized in a straight forward way.



Chapter 5
An Algorithmic Comparison Study

Abstract. In this paper, we present a comparison study for three different iterative

Krylov methods that we have recently developed for the simultaneous numerical

solution of frequency-domain wave propagation problems when multiple wave fre-

quencies are present. The three approaches have in common that they require the

application of a single shift-and-invert preconditioner at a suitable seed frequency.

The focus of the present work lies on the performance of the respective iterative

method. In particular for three-dimensional problems, the efficient application of

the shift-and-invert preconditioner is discussed. We conclude with numerical ex-

amples that provide guidance concerning the suitability of the three methods.

Introduction

After spatial discretization using, for instance, the finite element method with N
degrees of freedom [13, Section 2], the time-harmonic wave equation has the form,

(K + iωkC − ω2
kM)xk = b, ωk := 2πfk, k = 1, ...,Nω, (5.1)

with stiffness matrix K, mass matrix M , and C consisting of Sommerfeld boundary
conditions [2] modeling absorption. Note that (5.1) yields a sequence of Nω linear

This chapter is based on the journal article:

M. Baumann and M.B. van Gijzen (2017). Efficient iterative methods for multi-frequency
wave propagation problems: A comparison study. Procedia Computer Science Vol. 108, pp.
645–654.

The extended paper version is invited for publication in the ICCS 2017 Special Issue of the
Journal of Computational Science.
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systems of equations. One way to solve the systems (5.1) simultaneously is to define
the block matrix of unknowns, X := [x1, ...,xNω ] ∈ CN×Nω , and to note that (5.1) can
be rewritten as a linear matrix equation,

A(X) := KX + iCXΩ−MXΩ2 = B, with Ω := diag(ω1, ...,ωNω ) and B := b1T.
(5.2)

The matrix equation (5.2) can then be solved using a global Krylov method, cf. [68].
A second approach is to consider a linearization [125] of the form,([

iC K
I 0

]
− ωk

[
M 0
0 I

])[
ωkxk
xk

]
=

[
b
0

]
, k = 1, ...,Nω, (5.3)

where the angular frequencies ω1, ...,ωNω appear as a (linear) shift. For short-hand
notation, we define the block matrices,

K :=

[
iC K
I 0

]
∈ C2N×2N and M :=

[
M 0
0 I

]
∈ C2N×2N , (5.4)

and write (5.3) as (K − ωkM)xk = b, for xk := [ωkxk,xk]T and b := [b, 0]T. We
will consider the case C ≡ 0 independently. The matrix equation (5.2) then reduces
to two terms, and we can identify K = K as well as M = M and avoid doubling
of dimensions in (5.3). In this paper, we review and compare the following recently
developed algorithms:

• Global GMRES [68] for the matrix equation approach (5.2) (cf. Algorithm 5.1
and [13]),

• Polynomial preconditioners [1, 9] for multi-shift GMRES (cf. Algorithm 5.2),

• Nested multi-shift FOM-FGMRES as presented in [8] (cf. Algorithm 5.3-5.4).

Note that this list does not consider a comparison with the algorithms suggested
by [6, 119] and by [132]. Moreover, we restrict ourselves to GMRES-variants of
the respective algorithms, and refer to [5] for global IDR(s) and to [8] for the more
memory-efficient combination nested IDR-QMRIDR(s). In [1] a shifted polynomial
preconditioner is used within multi-shift BiCG. The derivations in Section 5.1 em-
phasize that the costs-per-iteration of each proposed algorithm are comparable, and
are dominated by the shift-and-invert preconditioner. In Section 5.2, we evaluate the
three approaches for a benchmark problem of the discretized time-harmonic elastic
wave equation. Special emphasis is put on the practical application of the shift-and-
invert preconditioner in three spatial dimensions in Section 5.3.

5.1 Review of the Developed Algorithms

The review of the subsequent algorithms is based on our works [8, 9, 13].
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5.1.1 The Preconditioned Matrix Equation Approach

The matrix equation (5.2) with right preconditioning reads,

A(P (τ)−1Y) = B, X = P (τ)−1Y, where P (τ) := (K + iτC − τ2M)−1, (5.5)

and A(·) as in (5.2). A similar reformulation has been suggested in [132]. We note
that the preconditioner P (τ) can be applied inexactly using, for instance, an in-
complete LU factorization. The (possibly complex) parameter τ is called the seed
frequency. In Algorithm 5.1, we state the global GMRES method [68]. Note that in

Algorithm 5.1 Right-preconditioned global GMRES for the matrix equation (5.5)
with linear operator as defined in (5.2), cf. [68]

1: Set R0 = B, V1 = R0/‖R0‖F . Initialization (X0 = 0)
2: for j = 1 to m do
3: Apply W = A(P (τ)−1Vj) . Preconditioner (might be inexact)
4: for i = 1 to j do . Block-Arnoldi method
5: hi,j = tr(WHVi)
6: W = W − hi,jVi
7: end for
8: Set hj+1,j = ‖W‖F and Vj+1 = W/hj+1,j

9: end for
10: Set Hm = [hi,j ]

j=1,...,m+1
i=1,...,m , Vm = [V1, ...,Vm] . Vm spans block Krylov space

11: Solve ym = argminy ‖Hmy − ‖B‖Fe1‖2 . e1 is first unit vector in Cm+1

12: Compute Xm = P (τ)−1(Vm ∗ ym) . ’∗’ denotes the star product, cf. [68]

the block Arnoldi method the trace inner product is used, and norms are replaced by
the Frobenius norm ‖·‖F for block matrices. After m iterations, an approximate solu-
tion to (5.2) in the block Krylov subspace Km(AP (τ)−1,B) is obtained. An efficient
preconditioner will yield convergence for m� N .

5.1.2 Preconditioners for Shifted Linear Systems

The methods presented in this section are both two-level preconditioning approaches.
As a first-level preconditioner, a shift-and-invert preconditioner of the form,

P(τ)−1 = (K − τM)−1 (5.4)
=

([
iC K
I 0

]
− τ

[
M 0
0 I

])−1

=

[
I τI
0 I

] [
I 0
0 (K + iτC − τ2M)−1

] [
0 I
I −iC + τM

]
, (5.6)

is applied. Based on the decomposition (5.6) we note that P (τ)−1 = (K + iτC −
τ2M)−1 as defined in (5.5) is the main computational work and, hence, the work-per-
iteration is comparable to Algorithm 5.1. When applying a scaled shift-and-invert
preconditioner to the block systems (5.3), the following equivalence holds,

(K − ωkM)P−1
k yk = b ⇔ (KP(τ)−1 − ηkI)yk = b, (5.7)
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if we introduce ηk := ωk/(ωk − τ), and the scaled preconditioners in (5.7) yield
P−1
k := (1−ηk)P(τ)−1 = (1−ηk)(K−τM)−1. Note that the latter is a preconditioned

shifted linear system with (complex) shifts ηk and system matrix C := KP(τ)−1 =
K(K − τM)−1. Due to the equivalence in (5.7), the preconditioner (5.6) needs to
be applied exactly. Moreover, right-preconditioning requires the back-substitution
xk = P−1

k yk.

Shifted Neumann Preconditioners

After applying the shift-and-invert preconditioner (5.6) to (5.3), we remain with solv-
ing,

(C − ηkI)yk = b, xk = P−1
k yk, k = 1, ...,Nω, (5.8)

where C = KP(τ)−1, and with (complex) shifts ηk = ωk/(ωk−τ). Efficient algorithms
for shifted linear systems (5.8) rely on the shift-invariance property, i.e. the identity,
Km(C, b) ≡ Km(C − ηI, b), for any shift η ∈ C; cf. [50, 124]. The (preconditioned)
spectrum of the matrix C is known to be enclosed by a circle of radius R and center c [9,
147]. Therefore, the Neumann preconditioner pn [117, Chapter 12.3] of degree n,

C−1 ≈
n∑
i=0

(I − ξC)i =: pn(C), with ξ =
1

c
= −τ − τ̄

τ̄
, (5.9)

has optimal spectral radius [9]. The polynomial preconditioner (5.9) can also be
represented in a different basis as, pn(C) =

∑n
i=0 αiCi. Shift-invariance can then be

preserved if the following holds,

(C − ηkI)pn,k(C) = Cpn(C)− η̃kI, (5.10)

where pn,k(C) =
∑n
i=0 αi,kCi is a polynomial preconditioner for (C−ηkI). Substitution

yields,

n∑
i=0

αi,kCi+1 −
n∑
i=0

ηkαi,kCi −
n∑
i=0

αiCi+1 + η̃kI = 0. (5.11)

The latter (5.11) is a difference equation and can be solved in closed form [1]:

αn,k = αn, (12a)

αi−1,k = αi−1 + ηkαi,k, for i = n, ..., 1, (12b)

η̃k = ηkα0,k. (12c)

Inner-Outer Krylov Methods

In our approach [8], we modify (5.8) by the substitutions, K̄ := K − ω1M, C̄ :=
K̄P(τ)−1, and solve the equivalent shifted systems,

(C̄ − η̄kI)yk = b, η̄k :=
ωk − ω1

ωk − τ
, k = 1, ...,Nω, (5.13)
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Algorithm 5.2 Multi-shift GMRES with polynomial preconditioner (5.9) for sys-
tems (5.8), cf. [1, 9]

1: Set r0 = b, v1 = r0/‖r0‖ . Initialization (x0 = 0)
2: for j = 1 to m do
3: Apply w = Cpn(C)vj . Polynomial preconditioner (5.9) of degree n
4: for i = 1 to j do . Arnoldi method
5: hi,j = wHvi
6: w = w − hi,jvi
7: end for
8: Set hj+1,j = ‖w‖ and vj+1 = w/hj+1,j

9: end for
10: Set Hm = [hi,j ]

j=1,...,m+1
i=1,...,m and Vm = [v1, ..., vm]

11: for k = 1 to Nω do
12: Solve Cm 3 zk = argminz ‖(Hm − η̃kIm)z− ‖r0‖e1‖ . Shifts η̃k acc. to (12c)
13: Resubstitute yk = pn,k(C)Vmzk . Coefficients of pn,k acc. to (12a)-(12b)
14: end for

with the advantage that for k = 1 we solve the base system C̄y1 = b (unshifted
case). A nested multi-shift Krylov algorithm consists in general of mi inner iterations
and mo outer iterations. The nested FOM-FGMRES algorithm [8] is a combination
of inner multi-shift FOM (Algorithm 5.3) with outer flexible multi-shift GMRES
(Algorithm 5.4).

Algorithm 5.3 Inner multi-shift FOM for (5.13), cf. [124]

1: Set r0 = b, v1 = r0/‖r0‖ . Initialization (x0 = 0)
2: for j = 1 to mi do
3: Apply w = K̄(K − τM)−1vj . Apply matrix C̄, cf. definition in (5.13)
4: for i = 1 to j do . Arnoldi method
5: hi,j = wHvi
6: w = w − hi,jvi
7: end for
8: Set hj+1,j = ‖w‖ and vj+1 = w/hj+1,j

9: end for
10: Set Hmi = [hi,j ]

j=1,...,mi
i=1,...,mi

and Vmi = [v1, ..., vmi ]
11: for k = 1 to Nω do
12: Solve Cmi 3 yk = (Hmi − η̄kImi)−1(‖r0‖e1) . Shifted Hessenberg systems
13: Compute γk = yk(mi)/y1(mi) . Collinearity factors, cf. [8]
14: Compute xk = Vmiyk
15: end for

In [8], we derive that if the inner method yields collinear residuals in the sense,

r
(k)
j = γ

(k)
j rj , γ

(k)
j ∈ C for k = 1, ...,Nω, (5.14)

for rj being the residual of the base system after mi inner iterations, we can preserve
shift-invariance in the outer method. The consecutive collinearity factors of the inner
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method then appear on a diagonal matrix Γk of a modified Hessenberg matrix in the
outer loop (see line 13 in Algorithm 5.4 and [8], respectively). More precisely, after
mo outer iterations, the solution to,

z̄k = argmin
z∈Cmo

∥∥((Hmo
− Imo)Γk + Imo

)
z− ‖r0‖e1

∥∥
2

, yk = Z(k)
mo z̄k, (5.15)

yields approximate solutions to (5.13) in the search spaces Z
(k)
mo ∈ C2N×mo that min-

imize the 2-norm of the residual of the k-th shifted system, cf. [8]. In (5.15), the

Hessenberg matrix Hmo
corresponds to the base system, and Γk := diag(γ

(k)
1 , ..., γ

(k)
mo)

is constructed from the collinearity factors in (5.14). Note that multi-shift FOM
(Algorithm 5.3) yields collinear residuals by default [8, 124].

Algorithm 5.4 Outer multi-shift FGMRES for (5.13), cf. [8, 50]

1: Set r0 = b, v1 = r0/‖r0‖ . Initialization (x) = 0)
2: for j = 1 to mo do

3: [z
(k)
j , {γ(k)

j }Nωk=1] = msFOM(C̄, {η̄k}Nωk=1, vj , maxit=mi) . Inner method
(call of Algorithm 5.3)

4: Apply w = K̄(K − τM)−1z
(k=1)
j . Apply matrix C̄ to base system

5: for i = 1 to j do . Arnoldi method
6: hi,j = wHvi
7: w = w − hi,jvi
8: end for
9: Set hj+1,j = ‖w‖ and vj+1 = w/hj+1,j

10: end for
11: Set Hmo = [hi,j ]

j=1,...,mo+1
i=1,...,mo

and Z
(k)
mo = [z

(k)
1 , ..., z

(k)
mo ] . Collect search spaces

12: for k = 1 to Nω do
13: Set H(k)

mo
=
(
Hmo

− Imo
)

Γk + Imo , where Γk := diag(γ
(k)
1 , ..., γ

(k)
mo)

14: Solve Cmo 3 z̄k = argminz

∥∥H(k)
mo

z− ‖r0‖e1

∥∥ . Hessenberg systems (5.15)

15: Compute yk = Z
(k)
mo z̄k

16: end for

5.2 Comparison Study and Convergence Behavior

We focus our numerical experiments on linear systems (5.1) that stem from a finite
element discretization [2, 13] of the time-harmonic elastic wave equation [28]:

−ω2
kρuk −∇·σ(uk) = s, x ∈ Ω ⊂ Rd={2,3}, (5.16a)

iωkρ B(cp, cs)uk + σ(uk)n̂ = 0, x ∈ ∂Ωa, (5.16b)

σ(uk)n̂ = 0, x ∈ ∂Ωr. (5.16c)

The Stress tensor in (5.16a) fulfills Hooke’s law, σ(uk) = λ(x) (∇·uk Id)+µ(x)
(
∇uk+

(∇uk)
T )

, and we consider Sommerfeld radiation boundary conditions on ∂Ωa that
model absorption, and a free-surface boundary condition on ∂Ωr (reflection). A finite
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element discretization† with basis functions that are B-splines [24, Chapter 2] of degree
p ∈ N>0 yields,

(K + iωkC − ω2
kM)uk = s, k = 1, ...,Nω, (5.17)

where uk contains FEM coefficients of the k-th displacement vector, and s models
a time-harmonic source term. In the case of purely reflecting boundary conditions,
∂Ωa = ∅, we obtain C = 0; cf. [13].

The inhomogeneous set of parameters {ρ, cp, cs} is described in Figure 5.1a. In
Figure 5.1b, we prescribe material-air boundary conditions at the upper boundary
only, and a point source at (Lx/2, 0)T. When comparing convergence behavior of the
matrix equation approach (5.2) with the shifted system re-formulation (5.3), we make
use of the identity,

‖Rm‖F =

√√√√Nω∑
k=1

∥∥∥r(k)
m

∥∥∥2

2
, for Rm := [r(1)

m , ..., r(Nω)
m ] ∈ CN×Nω ,

where
{
r

(k)
m

}Nω
k=1

are the columns of Rm and not the residuals of the shifted systems.
Since this way the block residual in Frobenius norm naturally is larger than an indi-
vidual residual norm in 2-norm, we use the maximum 2-norm of the residuals of (5.3)
as a fair stopping criteria. All numerical examples presented in Section 5.2 have been
implemented in Python-3, and executed on a computer with 4 CPUs Intel I5 with
32 GB of RAM.
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m2
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(a) Density distribution.
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(b) <(u3) at f = 16Hz, C 6= 0.
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(c) <(u1) at f = 20Hz, C ≡ 0.

Figure 5.1: Set-up of the 2D numerical experiments: Density distribution (left), and
real part of z-component of the displacement at f = 16Hz (middle) as well as of x-
component at f = 20Hz (right). The speed of pressure waves and shear waves are
cp = {2000, 3000}ms and cs = {800, 1600}ms , respectively, and the Lamé parameters
{λ,µ} in Hooke’s law are calculated accordingly. The case C ≡ 0 implies purely
reflecting boundary conditions, and we apply viscous damping of 5%.

†For the finite element discretization of (5.16a)-(5.16c) we use the Python package nutils [149].
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5.2.1 Convergence Study in the Presence of Viscous Damping

As a first numerical experiment we consider the case when viscous damping is added
to (5.17) via the substitution ωk 7→ (1−εi)ωk for ε > 0. As we explain in Section 5.1.2,
the spectral radius of the polynomial preconditioner (5.9) can be minimized as a result
of the optimal seed frequency τ∗(ε) derived in [9]. Table 5.1 demonstrates that an
increase of the polynomial degree n reduces the number of iterations of Algorithm 5.2,
cf. [47, 160]. The best CPU time is obtained for n = 3 in (5.9).

Table 5.1: Performance of Algorithm 5.2 for the case C = 0 and viscous damping
parameter ε = 0.05. We consider a fixed frequency range of Nω = 5 equally-spaced
frequencies in fk ∈ [8, 16]Hz, and 2×200×200 dofs. The seed parameter τ is chosen
according to [9].

n = 10 5 4 3 2 1 0
# iterations 12 20 25 29 39 57 106
CPU time [s] 24.20 20.77 20.66 19.84 20.27 22.51 36.87

Table 5.2 compares the performance of the three algorithms when viscous damping
is present, i.e. ε > 0; cf. Figure 5.1c. Clearly, the shifted systems approaches
outperform the matrix equation approach.

Table 5.2: Comparison of the three algorithms for the setup described in Table 5.1.
The degree of the polynomial preconditioner is fixed at n = 3. We report CPU time
in seconds and in parenthesis the number of iterations until tol=1e-8 is reached.

problem size frequency range Nω Gl-GMRES poly-msGMRES FOM-FGMRES

2×200×200 ωk∈2π[12, 16]Hz 5 29.3 (48) 12.65 (12) 12.63 (7 · 8)
2×200×200 ωk∈2π[10, 16]Hz 5 46.6 (75) 15.31 (19) 16.04 (12 · 8)
2×200×200 ωk∈2π[8, 16]Hz 5 79.9 (112) 19.80 (29) 19.90 (17 · 8)
2×200×200 ωk∈2π[12, 16]Hz 15 64.8 (47) 15.71 (12) 13.41 (7 · 8)
2×200×200 ωk∈2π[10, 16]Hz 15 115.9 (73) 18.37 (19) 16.86 (12 · 8)
2×200×200 ωk∈2π[8, 16]Hz 15 198.9 (109) 22.49 (29) 20.71 (17 · 8)

5.2.2 Suitability for Wide Frequency Ranges

We next consider the undamped problem (ε = 0) with Sommerfeld boundary condi-
tions (see Figure 5.1b) which is numerically more challenging. Here, we use n = 0
in Algorithm 5.2 because the spectral radius of the polynomial preconditioner is
R/|c| ≡ 1, cf. [9, 147]. The experiments in Table 5.3 and 5.4 show that the ma-
trix equation approach requires a large number of iterations, especially when the
number of frequencies is increased. This is due to the fact that the union of the
preconditioned spectra needs to be well approximated by the global GMRES method.

The equivalent, vectorized reformulation of the matrix equation (5.2),(K + iω1C − ω2
1M)

. . .

(K + iωNωC − ω2
Nω
M)


 x1

...
xNω

 =

b...
b

 ,
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Table 5.3: Comparison for undamped case and increased frequency range at a fixed
seed parameter τ = (0.7− 0.3i)ωmax, with ωmax = 2π · 8 Hz in this table.

problem size frequency range Nω Gl-GMRES poly-msGMRES FOM-FGMRES

2×100×100 ωk∈2π[7, 8]Hz 5 14.2 (111) 9.98 (96) 5.40 (20 · 8)
2×100×100 ωk∈2π[4, 8]Hz 5 16.3 (124) 10.81 (96) 5.55 (20 · 8)
2×100×100 ωk∈2π[1, 8]Hz 5 29.5 (193) 12.40 (106) 8.40 (20 · 11)
2×100×100 ωk∈2π[7, 8]Hz 15 42.6 (116) 11.42 (96) 5.86 (20 · 8)
2×100×100 ωk∈2π[4, 8]Hz 15 50.5 (127) 11.69 (96) 6.02 (20 · 8)
2×100×100 ωk∈2π[1, 8]Hz 15 148.9 (324) 13.68 (106) 8.97 (20 · 11)

Table 5.4: Setting as in Table 5.3 using quadratic B-splines (p = 2).

problem size frequency range Nω Gl-GMRES poly-msGMRES FOM-FGMRES

2×100×100 ωk∈2π[7, 8]Hz 15 86.9 (117) 18.74 (97) 13.86 (20 · 8)
2×100×100 ωk∈2π[4, 8]Hz 15 98.6 (130) 19.59 (97) 13.96 (20 · 8)
2×100×100 ωk∈2π[1, 8]Hz 15 267.4 (332) 28.87 (107) 18.95 (20 · 11)

shows that the preconditioner (5.5) acts on the block diagonals which demonstrates
that the block Krylov subspace in Algorithm 5.1 needs to approximate the union of
the spectra whereas in the shifted systems approach only one space is built due to
shift-invariance. This drawback is partly overcome by applying appropriate rotations
to the spectrum as we show in detail in [9].

5.2.3 Inexact Solves for the Shift-And-Invert Preconditioner

In Table 5.5 we exploit the use of an inexact LU factorization† for the shift-and-invert
preconditioner in Algorithm 5.1. Therefore, we extend the test case in Figure 5.1a
to 3D by an expansion in y-direction, see Figure 5.2a. The measured CPU times
indicate the trade-off between decomposition time and overall number of iterations.
In practice, more advanced inexact preconditioners such as multigrid [112, 113] or
hierarchical matrix decompositions [3, 13] are used for seismic applications.

Table 5.5: Inexact solves for the shift-and-invert preconditioner in Algorithm 5.1. We
consider Nω = 10 equally-spaced frequencies with seed parameter τ = (0.7−0.3i)ωmax.
We use ‖Rm‖F < 1e-8 as stopping criteria.

problem size frequency range preconditioner setup time CPU time # iter.
3×35×35×35 ωk∈2π[1, 3]Hz exact inverse 4533.9 5396.2 53
3×35×35×35 ωk∈2π[1, 3]Hz iLU(10.0) 332.9 2852.3 482
3×35×35×35 ωk∈2π[1, 3]Hz iLU(20.0) 559.2 2179.0 367
3×35×35×35 ωk∈2π[1, 3]Hz iLU(30.0) 1061.4 2129.8 197

†We use Python’s built-in incomplete LU factorization scipy.sparse.linalg.spilu.
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5.3 Additive Coarse Grid Correction for the 3D
Elastic Preconditioner

We turn our attention to the shifted systems approach, i.e. Algorithm 5.2 or Algo-
rithm 5.3-5.4, and consider numerical problems that stem from elasticity problems
in three spatial dimensions, cf. Figure 5.2. It has been noted multiple times in this
thesis that the shift-and-invert preconditioner (5.6), other than in Section 5.2.3, needs
to be applied to full accuracy due to the equivalence used in (5.7). In Section 4.4.3,
we have proposed a 3D block-SSOR preconditioner that efficiently solves a sequence
of 2D problems. The numerical results of Figure 4.15, however, yield unsatisfying
convergence behavior even if the block-SSOR preconditioner is applied at the original
frequency. We note that in Algorithm 5.2 and Algorithm 5.3-5.4, the shift-and-invert
preconditioner needs to be applied at a seed frequency τ that is chosen based on the
spectral analysis performed in Section 3, i.e. according to (3.16), and that contains
damping.

(a) Speed of P-waves in m/s. (b) <(u1) at f = 8Hz, C 6= 0.

Figure 5.2: Three-dimensional test case. Left: The underlying parameters {ρ, cp, cs}
are chosen according to Figure 5.1a, and have been duplicated in y-direction. Right:
x-component of the displacement vector at f = 8 Hz.

Here, we present an extension of the block-SSOR preconditioner by an additive
coarse grid correction (CGC). The application of an additive CGC is a standard tool
used for Schwarz methods [34], i.e. in the situation where the numerical solution
is computed separately on sub-domains and where the CGC yields an additional
connectivity between the domains. In [34], an analysis of the CGC is presented based
on the ratio h/H between the fine grid associated with grid size h and the coarse
grid associated with grid size H. In [117, Section 13.4.2], coarse grid correction is
interpreted as a two-grid multigrid method with no smoothing. The observation
of [95, 135, 136] that a suitable choice for the deflation matrices Z and ZT in (1.22)
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yields an additive CGC leads immediately to the applicability of additive CGC as a
preconditioner. The comparison with multiplicative CGC in [96] concludes similar
results for both variants.

We recall the splitting for the damped elastic operator P (τ∗) (5.5) introduced in
Section 4.3.3,

K + iτ∗C − (τ∗)2M =: L + Ŝ + U , with Ŝ = blkdiag(Ŝ1, ..., Ŝnz ), (5.18)

and with τ∗ chosen according to (3.16). With appropriate splitting, the block en-
tries

{
Ŝi
}nz
i=1

yield a sequence of 2D problems that can be solves efficiently using
level-2 MSSS techniques as in Section 4.3.2. Based on the splitting (5.18), a block-
SSOR preconditioner PSSOR can be defined. If an additive coarse grid correction PCGC

is applied, the (damped) preconditioner reads,

Ph(τ∗)−1 = P−1
SSOR + PCGC =

[
(LŜ−1 + I)Ŝ(Ŝ−1U + I)

]−1

+ PPH(τ∗)−1R, (5.19)

with prolongation and restriction matrices, P and R, that realize a mapping between
the fine and the coarse grid, respectively. If the discretization size H for the coarse
grid is much larger than h for the fine grid, the inverse PH(τ∗)−1 in (5.19) can be
computed efficiently; for instance using a direct method. The coarse operator PH here
stems from a direct (finite element) discretization of the damped elastic wave equation
on a coarse grid and, thus, replaces the so-called Galerkin operator (RPhP )−1 used in
the multigrid literature [18, 140]. A block Jacobi preconditioner has been combined
with additive coarse grid correction in [155].

Prolongation and Restriction Operators

The prolongation matrix P and restriction matrix R in (5.19) realize a mapping
between the fine and coarse grid. Here, we assume a three-dimensional grid (d = 3)
and first-order B-splines for the FEM discretization (p = 1). Let the fine grid have
N = 3nxnynz grid points and the coarse grid N c = 3ncxn

c
yn

c
z, with N c � N and, in

general a grid spacing of H 6= 2h.
In one spatial direction, the prolongation and restriction operators are rectangular

matrices of the dimensions,

Px ∈ Rnx×n
c
x and Rx ∈ Rn

c
x×nx .

In Figure 5.3, we illustrate the definition of both operators in our implementation:
Since Hx is not necessarily a multiple of hx, we suggest for interior grid points to use
linear interpolation from nearest neighbors, and so-called injection at the boundary.
Since the solution of the damped elastic wave equation is smooth, we expect linear
interpolation to be sufficient. Using the numbering introduced in Appendix A, the
tensor product,

P = I3 ⊗ Px ⊗ Py ⊗ Pz ∈ RN
c×N ,

R = I3 ⊗Rx ⊗Ry ⊗Rz ∈ RN×N
c

,

yields prolongation and restriction operators in 3D. This grid-based definition of re-
striction and prolongation is valid when first-order finite elements are considered. We
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refer to [67] for a more general framework of prolongation and restriction operators
mapping between function spaces of higher-order B-splines.

α

1− α

0 Lx

Rx

Px

Hx

hx

Figure 5.3: Restriction and prolongation operators for a one-dimensional grid dis-
cretizing the interval [0,Lx], exemplified for a fine grid of nx = 5 and a coarse grid of
ncx = 4 grid points. Dashed arrows indicate linear interpolation, and straight arrows
visualize injection on the boundary. Note that here Hx is not a multiple of hx.

5.3.1 An SSOR-MSSS Preconditioner with Additive Coarse
Grid Correction for Damped 3D Problems

The efficiency of an additive CGC preconditioner is demonstrated by means of nu-
merical experiments performed for the damped three-dimensional elastic problem de-
scribed in Figure 5.2. In order to have an efficient algorithm for the shifted linear
systems approach (using Algorithm 5.2 or Algorithm 5.3-5.4), we require the precon-
ditioner (5.6) to have optimal computational complexity, that is O(n3) if n := nx =
ny = nz. In order to achieve the required accuracy, we apply preconditioner (5.19)
to PGMRES. In Figure 5.4, we demonstrate that the additive CGC (5.19) leads to a
constant number of PGMRES iterations if the (damped) seed frequency τ∗ is chosen
according to (3.16). The convergence results in Figure 5.4, moreover, demonstrate
grid-independence of the CGC since we double the maximum wave frequency in each
experiment which in 3D implies an increase of the (fine) computational grid by a
factor of 8.

Table 5.6 contains the CPU times corresponding to Figure 5.4. The additive CGC
has been implemented upon our Fortran 90 implementation used in Section 4.4, and
a precomputed LU decomposition using SuperLU [79] is used for the inversion at the
coarse grid level. The experiments in Table 5.6 and Figure 5.4 show a constant number
of PGMRES iterations only when an additive CGC is applied. Since we double the
number of grid points in every spatial direction, we observe a factor of ∼ 8 in CPU
time per iteration. A small increase of this optimal complexity is due to the fact that
the LU factorization of the coarse grid operator needs to be applied. For the largest
test case, the storage requirement of the SuperLU implementation exceeds the RAM
memory. This can be overcome with a recursive strategy, i.e. a 3-grid cycle.
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Figure 5.4: Convergence of preconditioned GMRES applied to the damped 3D prob-
lem (K + iτ∗C − (τ∗)2M) with preconditioner (5.19). The grid size is increased
proportional to the largest frequency fmax, cf. Table 5.6. The ’seed’ is chosen as
τ∗ = τ(ε, 2πfmin, 2πfmax) according to (3.16). We compare convergence with (straight
lines) and without (dashed lines) additive coarse grid correction in (5.19).

Table 5.6: Iteration numbers and CPU times for PGMRES when the precondi-
tioner (5.19) is applied to the damped 3D problem. We report the effect of an additive
CGC at the absence of viscous damping, i.e. ε = 0.

hx = hy = hz 40m 20m 10m 5m
freq. range [0.5, 1]Hz [1, 2]Hz [2, 4]Hz [4, 8]Hz

ndofs = 5, 184 46, 875 375, 000 3, 000, 000
PH(τ∗)−1 at H = 100m H = 50m H = 25m H = 12.5m

P−1
SSOR 31 (0.43) 51 (6.2) 85 (87.0) 127 (1145.4)

P−1
SSOR + PCGC 34 (0.50) 35 (4.7) 39 (47.3) -

Table 5.7: Performance of PGMRES with SSOR and additive CGC precondi-
tioner (5.19) applied to the damped 3D problem with viscous damping 0 ≤ ε� 1.

hx = hy = hz 40m 20m 10m
freq. range [0.5, 1]Hz [1, 2]Hz [2, 4]Hz

ε = 0.5 31 (0.43) 30 (4.1) 33 (42.5)
ε = 0.1 34 (0.47) 35 (4.8) 38 (46.8)
ε = 0.05 34 (0.46) 35 (4.7) 38 (46.1)
ε = 0.0 34 (0.48) 35 (4.8) 39 (47.3)
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We repeat the experiment in the presence of viscous damping, ε > 0, for the CGC.
Again, the constant iteration numbers in Table 5.7 imply optimal computational
complexity for applying the preconditioner in 3D.

5.3.2 Computational Complexity Study of the Overall Shifted
Algorithm

We next study the overall computational complexity of the shifted systems (5.3) ap-
proach for two-dimensional (d = 2) and three-dimensional (d = 3) elasticity problems
at multiple frequencies. In order to develop an efficient multi-shift Krylov method, the
computational costs per iteration are required to be of the order O(nd) which is the
order of a matrix-vector product. In Section 5.3.1, it has been shown that the shift-
and-invert preconditioner (5.6) can be applied at optimal complexity in the 3D case.
In order to analyze the performance of the overall multi-shift algorithms, we first focus
on the two-dimensional problem described in Figure 5.1. For the shift-and-invert pre-
conditioner, we use an approximate block-LU decomposition based on MSSS matrix
computations described in detail in Section 4.3.2. Table 5.8 shows that if the MSSS-
preconditioner is applied to a damped problem at seed frequency τ∗(ε = 0) (3.16),
a constant off-diagonal rank (semiseparable order) of r∗ = 5 is sufficient such that
PGMRES convergences within few iterations. In particular, we measure a factor
of ∼ 4 when the problem size is doubled in both spatial directions which is optimal.

Table 5.8: Performance of MSSS-preconditioned GMRES as developed in Section 4.3.2
applied to the 2D damped elastic wave equation. The semiseparable order (Defini-
tion 4.6) is bounded by r∗ = 5 in all experiments.

hx = hz 10m 5m 2.5m 1.25m
freq. range [2, 4]Hz [4, 8]Hz [8, 16]Hz [16, 32]Hz
ε = 0.5 4 (0.02) 4 (0.09) 4 (0.37) 4 (1.5)
ε = 0.1 5 (0.03) 5 (0.11) 4 (0.36) 6 (2.1)
ε = 0.05 5 (0.03) 5 (0.11) 5 (0.45) 6 (2.1)
ε = 0.0 5 (0.03) 5 (0.11) 5 (0.45) 6 (2.1)

We next apply preconditioned multi-shift GMRES (Algorithm 5.2 at n = 0) to
multi-frequency problems in 2D up to a frequency of 32 Hz, cf. Table 5.9. As in
the previous experiment, the preconditioner is applied at the (optimal) seed fre-
quency τ∗ (3.16). As a consequence of Corollary 3.12, we compare convergence at
frequency intervals such that the ratio ωmax/ωmin is constant. If the viscous damping
parameter ε is large, the convergence bound visualized in Figure 3.3 (green line for
the tolerances used in Table 5.8) is descriptive, and a constant number of iterations
for the different experiments is observed. In Table 5.9, we show that the iteration
numbers stay almost constant if ε > 0. According to Figure 3.3, an upper bound for
the multi-shift GMRES iteration number exists. In CPU time, we observe an increase
of a factor ∼ 4 due to the increase in mesh size. In the absence of viscous damping,
ε = 0, the iteration number is proportional to the largest wave frequency [112, 113]
and we observe a factor of ∼ 8 in CPU time in Table 5.9.
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Table 5.9: Preconditioned multi-shift GMRES (Algorithm 5.2 at n = 0) applied to
Nω = 10 equidistantly spaced frequencies. The shift-and-invert preconditioner is ap-
plied as studied in Table 5.8.

hx = hz 10m 5m 2.5m 1.25m
freq. range [2, 4]Hz [4, 8]Hz [8, 16]Hz [16, 32]Hz
ε = 0.5 10 (0.62) 11 ( 2.8) 12 ( 12.8) 12 ( 49.4)
ε = 0.1 20 (0.90) 28 ( 5.8) 33 ( 31.8) 37 ( 160.7)
ε = 0.05 24 (1.02) 40 ( 8.0) 53 ( 47.8) 64 ( 264.9)
ε = 0.0 31 (1.22) 77 (14.0) 163 (134.6) 358 (1391.2)

(Multi-shift) GMRES is a long-recurrence Krylov method, and the costs per itera-
tion grow due to Arnoldi’s orthogonalization method. Moreover, the storage require-
ment is proportional to the iteration number. A more memory-efficient multi-shift
Krylov method is, therefore, the nested approach [8] presentend in Algorithm 5.3-5.4.
In Table 5.10, we show that in the case of ε = 0 the same complexity O(n3) can be
obtained using short recurrences due to the inner-outer scheme.

Table 5.10: Comparison of multi-shift GMRES (Algorithm 5.2) with nested multi-
shift FOM-FGMRES (Algorithm 5.3-5.4) for the test case without viscous damping,
ε = 0, in Table 5.9. The iteration numbers for the nested algorithm are reported as
mo × mi, where the inner method (Algorithm 5.3) is stopped if either the residual
norm drops below 0.1, or the maximum iteration number mi is reached.

hx = hz 10m 5m 2.5m 1.25m
freq. range [2, 4]Hz [4, 8]Hz [8, 16]Hz [16, 32]Hz

msGMRES 31 (1.22) 77 (14.0) 163 (134.6) 358 (1391.2)
FOM-FGMRES 3×15 (2.1) 6×15 (19.0) 7×30 (179.7) 16×30 (1835.1)

Consider the extension of the previous test case to three-dimensions in Figure 5.2.
We have demonstrated in Section 5.3.1 that the shift-and-invert preconditioner can be
applied at optimal computational complexity if an additive coarse grid correction is
applied. In Table 5.11, we repeat the numerical experiment for multi-shift GMRES for
a three-dimensional test problem, and observe a similar behavior: In the presence of
viscous damping the iteration number is (almost) constant and we obtain an algorithm
in O(n3). If ε = 0, the iteration number doubles and we obtain O(n4) complexity. In
particular, this complexity is favourable to what has been observed in Section 4.4.3
when a block-SSOR preconditioner has been applied directly to the wave frequency
of the original single-shift problem. In Appendix C, the complexity study is repeated
for the 3D wedge problem described in Figure 1.4 .

Conclusions

We have compared three GMRES-based algorithms for the simultaneous iterative
solution of frequency-domain wave propagation problems at multiple frequencies that
have the discretized form (5.1). The three approaches share that they require the
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Table 5.11: Multi-shift GMRES with a block-SSOR and additive CGC precondi-
tioner (5.19) applied to the 3D problem shown in Figure 5.2 at Nω = 10 equally
spaced frequencies.

hx = hy = hz 40m 20m 10m
freq. range [0.5, 1]Hz [1, 2]Hz [2, 4]Hz

ε = 0.5 6 ( 9.2) 8 (103.7) 9 (1201.2)
ε = 0.1 7 (10.5) 11 (140.6) 16 (2020.8)
ε = 0.05 8 (11.2) 12 (148.0) 20 (2376.3)
ε = 0.0 8 (11.2) 14 (163.4) 26 (2889.4)

application of a single shift-and-invert preconditioner at a so-called seed frequency.
From our numerical experiments we draw the following conclusions:

• In the presence of viscous damping (experiments in Subsection 5.2.1) the opti-
mal seed parameter derived in [9] implies a polynomial preconditioner which,
depending on the degree n of the polynomial, leads to a significant reduction of
the number of multi-shift GMRES iterations (Algorithm 5.2). Without viscous
damping, however, the spectral radius of the polynomial preconditioner equals
one and no improvement has been observed.

• The matrix equation approach (Algorithm 5.1) builds up a block Krylov sub-
space that needs to approximate the union of all preconditioned spectra. This
leads to a much larger number of overall iterations, and a worse performance
compared with the shifted systems approach when a wide range of frequencies
is considered. Because of the less restrictive framework, however, the shift-and-
invert preconditioner (5.5) can be applied inexactly which leads to improve-
ments especially for 3D problems (experiments in Subsection 5.2.3). Moreover,
the benefits of efficient block matrix-vector products when multiple sources are
considered is demonstrated in [13].

• For a wide frequency range (experiments in Subsection 5.2.2) we observe that
the nested algorithm 5.3-5.4 outperforms the considered alternatives with re-
spect to measured CPU time. This is due to shorter loops in the respective
Arnoldi iterations. From the summary in Table 5.12 we note that the storage
requirements for the flexible outer Krylov method can be limited when mo is
small compared to mi.

• In the numerical experiments in Subsection 5.3.1 and Subsection 5.3.2, the com-
putational complexity of the multi-shift approach with a shift-and-invert pre-
conditioner in two and three spatial dimensions has been studied. Therefore,
multiple frequencies ωk in the intervals Ii = 2π[2i, 2i+1]Hz, i = 0, 1, 2, ..., have
been considered. The largest frequency induces a computational grid with,
hence, n ∼ 2i/h grid points in each spatial direction. The parameter of the
shift-and-invert preconditioner τ∗i (ε) is chosen based on the spectral analysis
in Chapter 3. Due to the damping in τ∗i (ε) according to (3.16), the 2D and
3D preconditioner can be applied in optimal complexitiy, i.e. in O(nd). The
convergence study of preconditioned multi-shift GMRES and preconditioned
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nested multi-shift FOM-FGMRES has shown computational complexity O(nd)
if the viscous damping parameter ε > 0, and O(nd+1) if ε = 0, where d ∈ {2, 3}
is the problem dimension. Both are independent of the number of frequencies
within Ii due to shift-invariance in both Krylov methods.

Table 5.12: Comparison regarding memory requirements and costs-per-iteration
when (5.1) has fixed problem size N , and Nω distinct frequencies are present. Note
that in all three algorithms, a single MatVec also requires a solve for the shift-and-
invert preconditioner.

Algorithm leading memory requirement # MatVec’s
Gl-GMRES(m) N ·Nω ·m for Vm (in Alg. 5.1, line 10) Nω ·m
poly-msGMRES(m,n) 2N ·m for Vm (in Alg. 5.2, line 10) (n+ 1)·m
FOM(mi)-FGMRES(mo) 2N ·Nω ·mo for Z

(k)
mo (in Alg. 5.4, line 11) mi ·mo





Chapter 6
Conclusions and Recommendations

6.1 Conclusions

In this dissertation, a number of new numerical methods for the efficient solution of
multi-frequency wave propagation problems have been suggested. The development
includes prototyping of iterative Krylov methods, spectral analysis and convergence
studies, and practical implementation aspects such as memory-efficient low-rank tech-
niques for efficiently applying the preconditioner. Many of our key findings have been
demonstrated with numerical experiments towards the end of the respective thesis
chapters, and in particular in chapter 5 we present detailed evaluations of our imple-
mentations. We conclude with an overview of our scientific findings.

Matrix Equation vs. Shifted Systems

A key component of this thesis work has been the efficient iterative solution of wave
propagation problems in the situation when multiple linear problems arising from
different angular wave frequencies ωk are solved. Therefore, a reformulation to shifted
linear systems (as stated in Problem 1.6) and a reformulation as a matrix equation (as
stated in Problem 1.8) have been followed to some extend in parallel. The following
conclusions are drawn based on theoretical and practical aspects presented in this
thesis.

Applicability to a wide frequency range. We have compared both approaches
for a fixed frequency range ωk ∈ [ωmin,ωmax] in Section 5.2.2. When the frequency
interval is increased, numerical experiments have shown a faster convergence behavior
for multi-shift methods compared to block Krylov methods. Here, the linearization
in Problem 1.6 yields shifts that are proportional to the angular frequencies which is
favorable compared to the squared frequencies that appear in the matrix equation ap-
proach. This is moreover proven by Figure 3.2 (right) where the GMRES convergence
bound grows as the ration ωmax/ωmin increases.

Inexact solves of the shift-and-invert preconditioner. It has been pointed
out in Section 5.1 that the shift-and-invert preconditioner in the shifted systems ap-
proach needs to be applied to full accuracy while the matrix equation framework

117
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allows inexact solves. The computational benefit of an inexact LU decomposition for
the shift-and-invert preconditioner is demonstrated in Section 5.2.3. On the other
hand, we want to point out that the seed shift τ∗ according to (3.16) contains damp-
ing and can, therefore, be applied at optimal computational complexity. Moreover,
the spectral analysis of Section 3.3 applies only in case of an exact shift-and-invert
preconditioner. This implies, for instance, that the bounding circles do not hold in
case of inexact solves, and the second-level rotation preconditioner for the matrix
equation as demonstrated in Figure 3.4 becomes more complicated.

Memory requirements and convergence behavior. In Table 5.12, we sum-
marize the leading memory requirements for GMRES-type implementations of the
proposed algorithms. The advantage of the inner-outer multi-shift approach becomes
evident especially if the number of outer iterations is small compared to the iterations
of global GMRES applied to the matrix equation approach.

The Role of the Single Shift-And-Invert Preconditioner

The second focus of this work lies on the efficient implementation of a (single) precon-
ditioner that is suitable for a sequence of elasticity problems that stem from a wide
range of frequencies. This task consists of two main aspects:

• Firstly, the shift-and-invert preconditioner needs to be applied at a seed fre-
quency τ that works well for angular wave frequencies ωk from within a range
[ωmin,ωmax]. In chapter 3, this parameter is optimized based on a GMRES con-
vergence bound for the preconditioned spectrum. We have furthermore shown
that, in the presence of viscous damping, this bound depends on the ratio of
the frequency interval boundaries.

• Secondly, we address the fast application of the shift-and-invert preconditioner
at the seed value τ∗ which is optimal in the sense of (3.16) in two and three
spatial dimensions. For two-dimensional problems, we developed an inexact
block LU preconditioner based on multilevel sequentially semiseparable matrix
computations. Numerical experiments in Section 4.3.2 and Section 5.3.2 show
that the damped problem can be inverted efficiently at a very low off-diagonal
rank. For three-dimensional problems, we suggest a block SSOR preconditioner
with an additive coarse grid correction. Again, numerical experiments for the
damped problem show optimal computational complexity when applying the
3D preconditioner, cf. Section 5.6.

The approaches in [6, 119] suggest the application of multiple shift-and-invert pre-
conditioners. In the present setting, however, where the number of wave frequencies is
relatively small, we conclude that it is most efficient to apply a single preconditioner.

Overall Computational Complexity

Efficient multi-shift Krylov methods and the fast application of the shift-and-invert
preconditioner at an optimal seed frequency are the two main building blocks of the
developed algorithms. Numerical experiments have shown that the damped shift-and-
invert preconditioner can be applied at optimal computational complexity in 2D and
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3D. Together with the consequences of Lemma 3.8 and Corollary 3.12, the following
conclusion for the multi-shift algorithm can be drawn.

Consider a set of angular frequencies {ωk}Nωk=1 within the intervals Ii :=
2π[2i, 2i+1]Hz, i = 0, 1, 2, ..., i.e. the situation where ωmax/ωmin = const. ≡ 2.
For a constant number of points per wavelength this implies an increasing com-
putational grid of n ∼ 2i/h points in each spatial direction. Let τ∗i (ε,ωmin,ωmax)
be chosen optimally according to Lemma 3.8. The numerical experiments in
Chapter 5 show that multi-shift Krylov methods with a single shift-and-invert
preconditioner applied at τ∗i yield computational complexity of O(nd) if ε > 0,
and of O(nd+1) if ε = 0; where d ∈ {2, 3} is the problem dimension. In particular,
this complexity is independent of the number of frequencies Nω within Ii.

An iteration number proportional to the frequency has been observed many times
in the single-frequency case for Helmholtz [112] and elasticity problems [113]. The
main contribution of our work is, therefore, the fact that problems from multiple
frequencies can be solved simultaneously with the same complexity.

Time vs. Frequency Domain Approach

In Remark 1.4, we have stated that the computational complexity of an explicit
time-domain approach is ntO(nd) and of an iterative frequency-domain approach is
nitO(nd), and that both approaches have shown O(nd+1) complexity in practice since
the iteration number nit and the number of time steps nt are both proportional to
the largest frequency. Together with the conclusions of the previous section, this
generally shows that both approaches are computationally comparable for solving
the elastic forward problem which has been the focus of this thesis. A complete
conclusion is, therefore, only possible if also modeling aspects and the performance
of the inverse problem, i.e. the quality of the objective function for the full-waveform
inversion (1.35)-(1.36), are taken into account.

6.2 Recommendations and Open Questions

Scientific research begins and ends with open questions. The research on seismic wave
simulations in the frequency-domain addressed in this thesis is, therefore, neither com-
plete nor finished. We present some possible future research directions and, moreover,
give some recommendations to closely related scientific areas from a computational
mathematics point-of-view.

Model-Order Reduction

The key problem considered in this thesis is to solve the multi-frequency problem
(K + iωkC − ω2

kM)xk = b at a given set of frequencies ωk ∈ [ωmin,ωmax] where k is
from a known index set, i.e. k ∈ I. Suppose there is a rectangular matrix U such
that the approximation, x` ≈ U x̃`, ` /∈ I, holds where the numerical solution x` is
associated with frequency ω` within the same interval, but ` /∈ I. We here assume
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that x̃` is of much smaller dimension compared to x`. If a POD-type approach [154]
is followed, the columns of the matrix U are the leading left singular vectors of a
snapshot matrix of the form [x(ω1), ..., x(ωNω )]. This requires the solution at multiple
frequencies during the so-called offline phase. The reduced-order model is then given
by the projected systems,

(K̃ + iω`C̃ − ω2
` M̃)x̃` = b̃, ` /∈ I, ω` ∈ [ωmin,ωmax], (6.1)

with matrices of reduced dimensions,

K̃ := UHKU , C̃ := UHCU , M̃ := UHMU and b̃ := UHb.

Note that the structure of (6.1) is unchanged compared to the discrete full-order
model. The reduced-order approach is in particular interesting because seismic mea-
surements are often only available on the surface (upper boundary) of the computa-
tional domain and, therefore, the objective function (1.35) in a full-waveform approach
requires the displacement only at certain points. For the reduced model this implies
that only y` := Ψx` has to be approximated well by ỹ` := ΨU x̃`, i.e. ‖y`−ỹ`‖ → min,
where the matrix Ψ here maps the state variable to the system’s output. A key open
question in this approach would be to investigate which set of frequencies are rele-
vant for the offline phase in order to derive a reduced-order model (6.1) of satisfying
quality.

A similar approach has been suggested in the context of quadratic eigenvalue
problems by [89]. Efficient reduced-order models for wave propagation problems at
multiple frequencies are subject to current research [32, 162].

Subspace Recycling

In order to design an efficient Krylov method for multi-frequency wave propagation
problems, we rely on a simultaneous solution process. This is reflected by the shift-
invariance property for Problem 1.6 and by the block approach for Problem 1.8. An
alternative approach for the solution of a sequence of shifted systems is the sequential
solution of some systems and then to recycle information from these solves in order
to improve the solution process of the remaining systems.

The approach in [133] follows a recycling strategy for restarted multi-shift GM-
RES based on an augmented search space using harmonic Ritz vectors. It is clear that
shifted linear systems share the same eigenspace. To what extend approximate eigen-
vectors (Ritz vectors) can be used for elasticity problems at different wave frequencies
requires further research. When the recycled information corresponds to solution vec-
tors of previous solves, a preconditioner similar to the POD-based deflation approach
of [23] can be of interest.

Absorbing Boundary Conditions

It is beyond the scope of this thesis to evaluate the quality of the Sommerfeld radia-
tion conditions for absorbing boundaries. The derivations presented in Section 1.1.1
are based on characteristics of the outwards traveling waves and leads to a Robin
boundary condition that includes the first temporal derivative of the displacement.
In frequency-domain, such a boundary condition yields a term proportional to the
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angular wave frequency ω. In contrast, an absorbing boundary condition in terms of
the acceleration ü or the displacement u would result in frequency-domain in a term
of the form, C(ω) = C1 − ω2C2, that could be combined in a straightforward way
with the stiffness and mass matrix to,

K + C(ω)− ω2M = (K + C1)− ω2(M + C2).

From a computational point-of-view, this has the advantage that the reformulation
approaches in Section 1.1.4 can be simplified, and, for instance, no doubling of di-
mensions in the shifted systems approach (Problem 1.6) is necessary.

In [31], a frequency-independent perfectly matched layer (PML) boundary condi-
tion is derived for electromagnetic wave propagation. To our knowledge, the extension
to the elastic case is still an open task. When the interval [ωmin,ωmax] is split equidis-
tantly on a logarithmic scale according to Corollary 3.12, a separate PML can be
prescribed for each subinterval. The quality of a frequency-independent PML in this
framework yields another open question subject to future research.

Geometric Multigrid

In Section 5.3, we present the effect of an additive coarse grid correction applied
to the damped elastic operator for large three-dimensional problems. Numerical ex-
periments have shown that a grid-independent convergence can be achieved if the
dimension of the coarse grid is chosen appropriately; in other words, the additive
coarse grid correction yields a constant number of preconditioned GMRES iterations.
This implies optimal computational complexity in term of the fine grid dimension.
The coarse grid correction, however, can be seen as a two-grid method and requires
in our current framework a direct solve of the coarse operator. In order to make this
solve more feasible, a V-cycle, i.e. a multigrid method [18, 140], with several levels
of coarsening can be investigated. Moreover, an approximate solution of the coarse
grid operator can be considered and its effect on the (outer) GMRES convergence
behavior requires further analysis.

Geometric multigrid has been analyzed theoretically for the acoustic wave equa-
tion. Fourier analysis for the Helmholtz equation at high frequencies [73] as well as
for the damped Complex Shifted Laplacian [45] has shown the importance of damp-
ing for the multigrid solution of the preconditioner. A local-mode analysis for the
two-dimensional elastic wave equation with damping is performed in [113]. A strict
proof for the three-dimensional case as well as an efficient multigrid implementation
for damped 3D elastic problems remains an open task.

High-Performance Computing

In Corollary 3.12 and the corresponding numerical experiment 3.19 we address the
question of distributing subintervals from a given frequency range to multiple parallel
processors. Our proposed distribution is load-balanced in such a way that an equal
number of Krylov iterations is expected in the sense of the GMRES convergence bound
in Corollary 3.7. Many other important aspects of high-performance computing are
not addressed in this thesis. The parallelization approach for iterative methods ap-
plied to elastic problems in [80] concludes a potential improvement in computational
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complexity compared to the time-domain approach. A parallel implementation of the
multi-shift conjugate gradient method is presented in [51] but has not been applied to
multi-frequency wave propagation problems. Concerning the low-rank approach de-
scribed in Section 4.3 we note that the hierarchically semiseparable matrix format [21]
can be an attractive alternative for parallel programming.



Appendix A
Spline-based Finite Element
Discretization for the Vector-Valued
Elastic Wave Equation

A finite element method [36, 39, 56] gives some freedom with respect to the choice
of basis functions for the trial and test spaces. In this section we give some im-
plementation details concerning the finite element discretization described in Sec-
tion 1.1.2 and in more detail in Section 4.1.2. We use B-spline basis functions of
degree p ∈ N+ according to the Cox-de Boor recursion formula [24]. Consider, first,
the one-dimensional case (d = 1), i.e. Ω = [0,Lx] = [0,x1]∪ [x1,x2]∪ ...∪ [xnx−1,xnx ],
with xnx ≡ Lx.
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Figure A.1: B-spline basis functions of degree p = 1 (left) and p = 2 (right) on the
one-dimensional unit interval [0, 1].

B-splines of degree p are then defined recursively via,

φpi (x) =
x− xi

xi+p − xi
φp−1
i (x) +

xi+p+1 − x
xi+p+1 − xi+1

φp−1
i+1 (x), p = 1, 2, ..., (A.1)
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with piecewise constant functions φ0
i equal to one within [xi,xi+1], and zero otherwise.

In Figure A.1, we plot the set of basis functions φpi , i = 1, ..., (nx − 1 + p), for p = 1
and p = 2 when nx = 4. Note that for p = 1 the knots xi in (A.1) coincide with grid
points, cf. [24] for more details.

For d = {2, 3}, the elastic wave equation is vector-valued and we make the
ansatz (4.7) for the displacement vector,

uk(x) ≈
ndofs∑
i=1

uikϕi(x), x ∈ Ω ⊂ Rd, uik ∈ C and ϕi : Rd → Rd. (A.2)

The basis functions ϕi are defined via the tensor expansion,

Rd 3 ϕi(x, y, z) :=
(
φi(x)ξj(y)ηk(z)

)
e`, ` ∈ {1, ..., d}, (A.3)

where e` is the `-th unit vector in Rd. For d = 2 or d = 3, the set of functions ξj
and ηk are defined according to (A.1) along the y-axis and z-axis, respectively. We
exemplify the index numbering in (A.3) for p = 1,

i := (nxnynz)(`− 1) + (nynz)i+ nzj + k, with

0 ≤ i ≤ nx − 1, 0 ≤ j ≤ ny − 1, 0 ≤ k ≤ nz − 1.

This lexicographic numbering is used in the finite element software Nutils [149] used for
our numerical experiments, and renumbering yields a discretization matrix of smaller
bandwidth, cf. Sections 4.3.2 and 4.3.3.

If we define n := nxnynz, we obtain ndofs = dn degrees of freedom for linear
B-spline basis functions, cf. (4.8) for the general case when p > 1. The spy pattern
for the stiffness matrix derived from the weak form (1.15) at different dimensions d
and different spline basis degrees p is shown in Figure A.2. The matrix size equals
the number of degrees of freedom in (A.2).

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0 50 100 150 200 250
0

50

100

150

200

250

Figure A.2: Spy pattern of the stiffness matrix K (4.10) for d = 2, p = 2 (left) and
d = 3, p = 1 (right). Lexicographic ordering of the unknown yields a d×d block matrix
with non-zeros resulting from p neighbors in each spatial direction.



Appendix B
Inversion of an SSS Matrix
Corresponding to a 1D Discretization

This appendix serves two purposes: We illustrate two basic SSS matrix operations
used at 1D level by means of an example computation. At the same time, we complete
Algorithm 4.2. For simplicity, we consider the case n = 4 in Definition 4.5,

A =


D1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

P2Q
H
1 D2 U2V

H
3 U2W3V

H
4

P3R2Q
H
1 P3Q

H
2 D3 U3V

H
4

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4

 ,

and refer to standard literature [19, 110, 150] for the more general case.

Inversion of a lower/upper diagonal SSS matrix

A lower diagonal SSS matrix in generator form is given by

L = SSS(Ps,Rs,Qs,Ds, 0, 0, 0), 1 ≤ s ≤ n, (B.1)

and we denote L−1 via,

L−1 = SSS(Ps, Rs, Qs, Ds, 0, 0, 0), 1 ≤ s ≤ n.

Clearly, for n = 4, the matrix (B.1) yields,

L =


D1 0 0 0
P2Q

H
1 D2 0 0

P3R2Q
H
1 P3Q

H
2 D3 0

P4R3R2Q
H
1 P4R3Q

H
2 P4Q

H
3 D4

 ,

and we immediately conclude Ds = D−1
s , s = 1, ..., 4, for all diagonal generators of

L−1. In Lemma 4.7, we claim that L−1 can be computed without increase of the off-
diagonal rank, and we illustrate this fact by computing the generators at entry (2, 1):

P2Q
H
1 D1 +D2P2QH

1 = 0 ⇔ P2QH
1 ≡ (−D−1

2 P2)(D−H1 Q1)H.
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The computation of U−1 in Algorithm 4.2 can be done analogously, and we refer
to [19, Lemma 2] for the complete algorithm and the case n 6= 4.

Matrix-matrix multiplication in SSS structure

In the final step of Algorithm 4.2 we perform, based on an LU factorization, the
matrix-matrix multiplication A−1 = U−1·L−1 with U−1 and L−1 given in upper/lower
diagonal SSS format (see previous appendix section). Here, we illustrate how to
perform the SSS matrix-matrix multiplication C = A · B when n = 4 and A and B
are given as,

DA
1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

0 DA
2 U2V

H
3 U2W3V

H
4

0 0 DA
3 U3V

H
4

0 0 0 DA
4

 ,


DB

1 0 0 0
P2Q

H
1 DB

2 0 0
P3R2Q

H
1 P3Q

H
2 DB

3 0
P4R3R2Q

H
1 P4R3Q

H
2 P4Q

H
3 DB

4

 .

The SSS matrix C can then be computed by appropriate block multiplications of the
respective generators. For example, the (3, 2) entry of the product yields,

C32 = 0 ·DB
2 +DA

3 P3Q
H
2 + U3V

H
4 P4R3Q

H
2

= (DA
3 P3 + U3V

H
4 P4R3)QH

2 ≡ PC3 (QC2 )H

The above computation illustrates on the one hand that the off-diagonal rank
(of C32) does not increase due to the lower/upper diagonal SSS structure of the ma-
trices A and B. On the other hand, we note that in general the off-diagonal rank of C
will increase due to the non-vanishing term that contains the full-rank generator DB

2 .
Matrix-matrix multiplication in SSS form is presented in [19, Theorem 1].



Appendix C
Numerical Results for the Elastic
Wedge Problem in Three Dimensions

We perform the numerical tests presented in Section 5.3.1 and Section 5.3.2 for the
3D elastic wedge problem as described in Figure 1.4. The problem sizes consid-
ered are tabulated in Table 1.1, and the computational domain for this test case is
Ω = [0, 600]× [0, 600]× [0, 1000] ⊂ R3, i.e. larger than in the test case considered in
Chapter 5.

Again, we first demonstrate the performance gain in CPU time of an additive
coarse grid correction (CGC) applied to the (damped) preconditioner. In more detail,
we apply preconditioned GMRES to the damped elastic problem K+ iτ∗C− (τ∗)2M ,
with τ∗ chosen as a function of the considered frequency range, and the viscous
damping parameter ε, cf. Section 3.2. The preconditioner is,

Ph(τ∗) = P−1
SSOR + α·PPH(τ∗)−1R, with α ∈ {0, 1}, (C.1)

with second term being the additive coarse grid correction, PCGC := PPH(τ∗)−1R,
as described in detail in Section 5.3. For large 3D problems, the block-SSOR term
resembles a sequence of nz 2D problems that are solved efficiently based on MSSS
techniques described in Section 4.3.2. In Table C.1, we report the results of adding

Table C.1: Iteration numbers and CPU times for PGMRES when the precondi-
tioner (5.19) is applied to the damped 3D problem. We report the effect of an additive
CGC at the absence of viscous damping, i.e. ε = 0.

hx = hy = hz 40m 20m 10m
freq. range [0.5, 1]Hz [1, 2]Hz [2, 4]Hz

ndofs = 16, 875 135, 000 1, 080, 000
PH(τ∗)−1 at H = 100m H = 50m H = 25m

P−1
SSOR 38 (1.58) 65 (22.7) 106 (318.6)

P−1
SSOR + PCGC 39 (1.76) 39 (15.8) 42 (162.9)

a coarse grid correction to PGMRES (compare Table 5.6 in Section 5.3.1). The
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offline costs for computing the LU factorization† of PH(τ∗) are not reported as the
factors are computed once in the overall multi-shift algorithm. However, the costs
for applying the coarse grid operator increase which is the reason for a factor slightly
higher than 8 recorded in CPU time between the different experiments, even when
a constant PGMRES iteration number in the presence of the CGC yields optimal
complexity in terms of ndofs. When ε > 0, similar results have been obtained, see
also Table 5.7.

Next, the shift-and-invert preconditioner with additive CGC (case α = 1 in (C.1))
is applied within multi-shift GMRES. In the same way as in Table 5.11, we see a
constant iteration number in the presence of viscous damping, and an iteration number
proportional to the largest frequency in the case of ε = 0. Again, the factor in CPU
timings is suboptimal due to the increasing work for applying the coarse operator, and
a multigrid approach needs to be applied when the size of the coarse grid increases.

Table C.2: Multi-shift GMRES with a block-SSOR and additive CGC precondi-
tioner (5.19) applied to the 3D wedge problem shown in Figure 1.4 at Nω = 10 equally
spaced frequencies.

hx = hy = hz 40m 20m 10m
freq. range [0.5, 1]Hz [1, 2]Hz [2, 4]Hz

ε = 0.5 7 (23.4) 8 (272.4) 9 (3,192.6)
ε = 0.1 9 (30.6) 14 (469.2) 20 (7,491.1)
ε = 0.05 10 (33.1) 17 (551.8) 24 (8,894.3)
ε = 0.0 10 (31.0) 21 (577.5) 44 (13,802.3)

†As in Section 5.3, we use SuperLU [79] on the coarse level.
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Software availability

An interactive visualization using Bokeh† demonstrates the findings of
Lemma 3.8. The visualization is purely browser-based and can be obtained from:

http://www.manuelbaumann.de/opt_tau

Most of the presented numerical experiments are available from the author’s
github account https://github.com/ManuelMBaumann. In particular, the fol-
lowing repositories correspond to a chapter of this thesis:

Chapter 2 https://bitbucket.org/ManuelMBaumann/nestedkrylov

Chapter 3 https://github.com/ManuelMBaumann/opttau

Chapter 4 https://github.com/ManuelMBaumann/elastic_benchmarks

Chapter 5 https://github.com/ManuelMBaumann/freqdom_compare

†Python’s interactive visualization library http://bokeh.pydata.org/

http://www.manuelbaumann.de/opt_tau
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