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Motivation
Full-waveform inversion

PDE-constrained optimization:

min
ρ(x),...

‖usim − umeas‖,

where in our application:

usim is the (numerical) solution of the elastic wave
equation,

umeas is obtained from measurements,

ρ(x) is the density of the earth layers we are interested in.

The modelling is done in frequency domain...
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Motivation
Modelling in frequency domain

Frequency domain approach:

The time-harmonic elastic wave equation

For many (angular) frequencies ωk , we solve

−ω2
kρ(x)û−∇ · σ(û) = r̂, x ∈ Ω ⊂ R2,3,

together with absorbing or reflecting boundary conditions.

Inverse (discrete) Fourier transform:

u(x, t) =
∑
k

û(x, ωk)e iωk t
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Motivation
Shifted linear systems

The discretized time-harmonic elastic wave equation is
quadratic in ωk :

(K + iωkC − ω2
kM)û = r̂,

which can be re-arranged as,[(
iM−1C M−1K

I 0

)
− ωk

(
I 0
0 I

)](
ωk û
û

)
=

(
M−1r̂

0

)
.

The latter is of the form:

(A− ωk I )xk = b, k = 1, ...,N.
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What’s a shifted linear system?

Definition

Shifted linear systems are of the form

(A− ωI )x(ω) = b,

where ω ∈ C is the shift.

For the simultaneous solution, Krylov methods are well-suited
because of the shift-invariance property:

Km(A,b) ≡ span{b,Ab, ...,Am−1b} = Km(A− ωI ,b).

“Proof”(shift-invariance)

For m = 2: K2(A,b) = span{b,Ab}
K2(A− ωI ,b) = span{b,Ab− ωb} = span{b,Ab}
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For example, multi-shift GMRES

After m steps of Arnoldi, we have,

AVm = Vm+1Hm,

and the approximate solution yields:

xm ≈ Vmym, where ym = argmin
y∈Cm

‖Hmy − ‖b‖e1‖ .

For shifted systems, we get

(A− ωI )Vm = Vm+1(Hm − ωIm),

and, therefore,

x
(ω)
m ≈ Vmy

(ω)
m , where y

(ω)
m = argmin

y∈Cm

∥∥∥H
(ω)
m y − ‖b‖e1

∥∥∥ .
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Preconditioning is a problem

Main disadvantage:

Preconditioners are in general not easy to apply. For

(A− ωI )P−1ω y(ω) = b, Pωx(ω) = y(ω)

it does not hold:

Km(AP−1,b) 6= Km(AP−1ω − ωP−1ω ,b).

However, there are ways...

Reference
Y. A. Erlangga, A robust and efficient iterative method for the numerical
solution of the Helmholtz equation. PhD thesis, TU Delft, 2005.
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Preconditioning is a problem
... or has been a problem?

Short historical overview:

(Single) shift-and-invert preconditioner:

P = (A− τ I ), τ ≈ {ω1, ..., ωN}

Many shift-and-invert preconditioners:

Pj = (A− τj I )

Polynomial preconditioners:

pn(A) ≈ P−1, pωn (A) ≈ P−1ω

Today’s talk: nested Krylov methods
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Nested Krylov methods for shifted linear systems

Our approach:

Use a flexible preconditioner, P(ω)−1j

this flexible preconditioner is a truncated multi-shift Krylov
method itself (“inner” method)

we require the inner method to produce collinear

residuals, i.e. r
(ω)
j = γrj . This is the case for:

I multi-shift GMRES [1998]
I multi-shift FOM [2003]
I multi-shift BiCG [2003]
I multi-shift IDR(s) [2014]

using γ, we can preserve the shift-invariance in the
“outer” Krylov method
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Nested Krylov methods for shifted linear systems

Overview of one possible combination:
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Flexible multi-shift GMRES

Use flexible GMRES in the outer loop,

(A− ωI )V̂m = Vm+1H
(ω)
m ,

where one column yields

(A− ωI )P(ω)−1j vj︸ ︷︷ ︸
inner loop

= Vm+1h
(ω)
j , 1 ≤ j ≤ m.

The “inner loop” is the truncated solution of (A− ωI ) with
right-hand side vj using e.g. msFOM.
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Flexible multi-shift GMRES

The inner residuals are:

r
(ω)
j = vj − (A− ωI )P(ω)−1j vj ,

rj = vj − AP−1j vj ,

Imposing r
(ω)
j = γrj yields:

(A− ωI )P(ω)−1j vj = γAP−1j vj − (γ − 1)vj (∗)

Note that the right-hand side in (∗) is a preconditioned shifted
system!
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Flexible multi-shift GMRES

Altogether,

(A− ωI )P(ω)−1j vj = Vm+1h
(ω)
j

γAP−1j vj − (γ − 1)vj = Vm+1h
(ω)
j

γVm+1hj − Vm+1 (γ − 1) ej = Vm+1h
(ω)
j

Vm+1

(
γhj − (γ − 1) ej

)
= Vm+1h

(ω)
j

which yields:

H
(ω)
m = (Hm − Im) Γm + Im,

with Γm := diag(γ1, ..., γm).
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A first example - The setting

Test case from literature:

Ω = [0, 1]× [0, 1]

h = 0.01 implying
n = 10.201 grid points

system size:
4n = 40.804

N = 6 frequencies

point source at center

Reference

T. Airaksinen, A. Pennanen, J. Toivanen, A damping preconditioner
for time-harmonic wave equations in fluid and elastic material.
Journal of Computational Physics, 2009.
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A first example - Convergence behavior 1/2

Preconditioned multi-shift GMRES:
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multi−shift GMRES convergence

 

 

f = 5,000
f = 10,000
f = 15,000
f = 20,000
f = 25,000
f = 30,000

We observe:

simultaneous
solve

CPU time:
17.71s
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A first example - Convergence behavior 2/2

Preconditioned nested FOM-FGMRES:
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Outer msGMRES convergence

f = 5,000
f = 10,000
f = 15,000
f = 20,000
f = 25,000
f = 30,000

We observe:

30 inner iterations

truncate when inner
residual norm ∼ 0.1

very few outer
iterations

CPU time: 9.62s
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A first example - More nested methods

We were running the same setting with different (nested)
multi-shift Krylov methods:

multi-shift Krylov methods
msGMRES rest msGMRES QMRIDR(4) msIDR(4)

# inner iterations - 20 - -
# outer iterations 103 7 136 134

seed shift τ 0.7-0.7i 0.7-0.7i 0.7-0.7i 0.7-0.7i
CPU time 17.71s 6.13s 22.35s 22.58s

nested multi-shift Krylov methods
FOM-FGMRES IDR(4)-FGMRES FOM-FQMRIDR(4) IDR(4)-FQMRIDR(4)

# inner iterations 30 25 30 30
# outer iterations 7 9 5 15

seed shift τ 0.7-0.7i 0.7-0.7i 0.7-0.7i 0.7-0.7i
CPU time 9.62s 32.99s 8.14s 58.36s
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Summary

3 Nested Krylov methods for Ax = b are widely used
↪→ extension to shifted linear systems is possible

3 Multiple combinations of inner-outer methods possible,
e.g. FOM-FGMRES, IDR-FQMRIDR, ...

3 The shift-and-invert preconditioner (or the polynomial
preconditioner) can be applied on top

7 Future work: recycling, deflation, ...
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Thank you for your attention!

Further reading:

M. Baumann and M. B. van Gijzen. Nested Krylov methods
for shifted linear systems. DIAM technical report 14-01,
2014.

Further coding:

https://bitbucket.org/ManuelMBaumann/nestedkrylov
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