

Space-time Galerkin POD for optimal control of nonlinear PDEs

Manuel Baumann Peter Benner Jan Heiland

September 11, 2018

EUCCO

Outline

1. Introduction

2. Optimal Space Time Product Bases

3. Relation to POD

4. Space-Time Galerkin-POD for Optimal Control

Introduction

$$\dot{x} - \Delta x = f$$

Consider the solution of a PDE:

$$x\in L^2\big(I;L^2(\Omega)\big)$$

with $I \subset \mathbb{R}$... the time-interval $\Omega \subset \mathbb{R}^n$... the spatial domain

and its numerical approximation:

$$\mathbf{x} \in \mathcal{S} \cdot \mathcal{Y}$$

with $\mathcal{S} \subset L^2(I)$... discretized time $\mathcal{Y} \subset L^2(\Omega)$... a FE space

Task: Find $\hat{S} \subset S$ and $\hat{Y} \subset Y$ of much smaller dimension to express **x**.

Space-Time Spaces

PDE solution $x \in L^2(I; L^2(\Omega))$ $S \subset L^2(I)$... discretized time $\mathcal{Y} \subset L^2(\Omega)$... a FE space

Consider finite dimensional subspaces

$$S = \operatorname{span}\{\psi_1, \dots, \psi_s\} \subset L^2(I)$$

 $\mathcal{Y} = \operatorname{span}\{v_1, \dots, v_q\} \subset L^2(\Omega)$

with the mass matrices

$$\mathbf{M}_{\mathcal{S}} = \left[(\psi_i, \psi_j)_{L^2} \right]_{i,j=1,\dots,s}$$
 and $\mathbf{M}_{\mathcal{Y}} = \left[(v_i, v_j)_{L^2} \right]_{i,j=1,\dots,q}$

and the product space

$$S \cdot \mathcal{Y} \subset L^2(I; L^2(\Omega)).$$

Space-Time Spaces

We represent a function

$$\mathbf{x} = \sum_{j=1}^{s} \sum_{i=1}^{q} \mathbf{x}_{i \cdot j} \nu_{i} \psi_{j} \in \mathcal{S} \cdot \mathcal{Y}$$

via its matrix of coefficients

$$\mathbf{X} = \left[\mathbf{x}_{i \cdot j}\right]_{i=1,\dots,q}^{j=1,\dots,s} \in \mathbb{R}^{q,s}$$

and vice versa.

Section 2

Optimal Space Time Product Bases

Space-Time Spaces

Lemma

The space-time L²-orthogonal projection $x = \Pi_{S \cdot \mathcal{Y}} \bar{x}$ of a function $\bar{x} \in L^2(I; L^2(\Omega))$ onto X is given as

$$\mathbf{X} = \mathbf{M}_{\mathcal{Y}}^{-1} \begin{bmatrix} ((x, \nu_1 \psi_1))_{\mathcal{S}.\mathcal{Y}} & \dots & ((x, \nu_1 \psi_s))_{\mathcal{S}.\mathcal{Y}} \\ \vdots & \ddots & \vdots \\ ((x, \nu_q \psi_1))_{\mathcal{S}.\mathcal{Y}} & \dots & ((x, \nu_q \psi_s))_{\mathcal{S}.\mathcal{Y}} \end{bmatrix} \mathbf{M}_{\mathcal{S}}^{-1},$$

where

$$((x,v_i\psi_j))_{\mathcal{S}\cdot\mathcal{Y}}:=((x,v_i)_{\mathcal{Y}},\psi_j)_{\mathcal{S}}:=\int_I \Big(\int_\Omega x(\xi,\tau)v_i(\xi)\,\mathrm{d}\xi\Big)\psi_j(\tau)\,\mathrm{d}\tau.$$

Jan Heiland Space-time Galerkin POD 7/24

Space-Time Spaces

Lemma (Space-time discrete L2-product)

Let x^1 , $x^2 \in S \cdot \mathcal{Y}$. Then, with

$$\mathbf{x}^{\ell} = [\mathbf{x}^{\ell}_{1\cdot 1}, \dots, \mathbf{x}^{\ell}_{q\cdot 1}, \ \mathbf{x}^{\ell}_{1\cdot 2}, \dots, \mathbf{x}^{\ell}_{q\cdot 2}, \ \dots, \ \mathbf{x}^{\ell}_{1\cdot s}, \dots, \mathbf{x}^{\ell}_{q\cdot s}]^{\mathsf{T}} =: \mathsf{vec}(\mathbf{X}^{\ell}),$$

the inner product in $S \cdot \mathcal{Y}$ is given as

$$((x^1, x^2))_{\mathcal{S} \cdot \mathcal{Y}} = \int_I \int_{\Omega} x^1 x^2 \, \mathrm{d}\xi \, \mathrm{d}\tau = (\mathbf{x}^1)^\mathsf{T} \left(\mathbf{M}_{\mathcal{S}} \otimes \mathbf{M}_{\mathcal{Y}} \right) \mathbf{x}^2$$

and the induced norm as

$$\|\boldsymbol{x}^{\ell}\|_{\mathcal{S}.\mathcal{Y}}^2 = \|\boldsymbol{x}^{\ell}\|_{\boldsymbol{M}_{\mathcal{S}}\otimes\boldsymbol{M}_{\mathcal{Y}}}^2 = \|\boldsymbol{M}_{\mathcal{Y}}^{1/2}\boldsymbol{X}^{\ell}\boldsymbol{M}_{\mathcal{S}}^{1/2}\|_F^2,$$

 $\ell = 1.2.$

Optimal Bases

Lemma (Optimal low-rank bases in space)

Given $x \in S \cdot \mathcal{Y}$ and the associated matrix of coefficients **X**. The best-approximating subspace $\hat{\mathcal{Y}}$ in the sense that $\|\Pi_{S \cdot \hat{\mathcal{Y}}} x - x\|_{S \cdot \mathcal{Y}}$ is minimal over all subspaces of \mathcal{Y} of dimension \hat{q} is given as $\hat{v}_i = 1, \dots, \hat{q}$, where

$$\begin{bmatrix} \hat{\mathbf{v}}_1 \\ \hat{\mathbf{v}}_2 \\ \vdots \\ \hat{\mathbf{v}}_{\hat{q}} \end{bmatrix} = V_{\hat{q}}^\mathsf{T} \mathbf{M}_{\mathcal{Y}}^{-1/2} \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_q \end{bmatrix},$$

where $V_{\hat{q}}$ is the matrix of the \hat{q} leading left singular vectors of

$$\mathbf{M}_{\mathcal{Y}}^{1/2}\mathbf{X}\mathbf{M}_{\mathcal{S}}^{1/2}$$

Jan Heiland Space-time Galerkin POD 9/24

CSC COMPUTATIONAL METHODS IN OPTIMAL Bases

The same arguments apply to the transpose of **X**:

Lemma (Optimal low-rank bases in time¹)

Given $x \in S \cdot \mathcal{Y}$ and the associated matrix of coefficients **X**. The best-approximating subspace \hat{S} in the sense that $\|\Pi_{\hat{S},\mathcal{M}}x - x\|_{\mathcal{S},\mathcal{M}}$ is minimal over all subspaces of S of dimension \hat{s} is given as span $\{\hat{\psi}_i\}_{i=1,\dots,\hat{s}}$, where

$$\begin{bmatrix} \hat{\psi}_1 \\ \hat{\psi}_2 \\ \vdots \\ \hat{\psi}_{\hat{\mathbf{s}}} \end{bmatrix} = U_{\hat{\mathbf{s}}}^\mathsf{T} \mathbf{M}_{\mathcal{S}}^{-1/2} \begin{bmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_s \end{bmatrix},$$

where $U_{\hat{s}}$ is the matrix of the \hat{s} leading right singular vectors of

$$\mathbf{M}_{\mathcal{Y}}^{1/2}\mathbf{X}\mathbf{M}_{\mathcal{S}}^{1/2}.$$

¹see BM&PB&JH '16: ArXiv:1611.04050

Jan Heiland Space-time Galerkin POD

Section 2

Optimal Space Time Product Bases

Relation to POD

The solution of a spatially discretized PDE

$$x: \tau \mapsto \mathbb{R}^q$$

is projected to $\mathcal{S} \cdot \mathbb{R}^q$ via

$$\Pi_{S,\mathcal{Y}} X = \begin{bmatrix} (x_1, \psi_1)_{L^2} & \dots & (x_1, \psi_s)_{L^2} \\ \vdots & \ddots & \vdots \\ (x_q, \psi_1)_{L^2} & \dots & (x_q, \psi_s)_{L^2} \end{bmatrix} \mathbf{M}_{S}^{-1}.$$

In the (degenerated) case that ψ_j is a delta distribution centered at $\tau_j \in I$, the coefficient matrix degenerates to

$$\begin{bmatrix} x_1(\tau_1) & \dots & x_1(\tau_s) \\ \vdots & \ddots & \vdots \\ x_q(\tau_1) & \dots & x_q(\tau_s) \end{bmatrix}$$

- the standard POD snapshot matrix.

Section 4

Space-Time Galerkin-POD for Optimal Control

 Jan Heiland
 Space-time Galerkin POD
 13/24

PDE:

$$\dot{x}(\tau,\xi) + \partial_{\xi}x(\tau,\xi)^2 = 0$$
 on $I \times \Omega$

Ansatz: $x \in \hat{S} \cdot \hat{\mathcal{Y}}$

$$\rightarrow x(\tau,\xi) = \sum_{j=1}^{\hat{s}} \sum_{i=1}^{\hat{q}} \mathbf{x}_{i,j} \hat{\psi}_j(\tau) \hat{v}_i(\xi)$$

$$\rightarrow x = \begin{bmatrix} \hat{\psi}_1 & \dots & \hat{\psi}_{\hat{q}} \end{bmatrix} \otimes \begin{bmatrix} \hat{v}_1 & \dots & \hat{v}_{\hat{s}} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \hat{\Psi}^\mathsf{T} \otimes \hat{\Upsilon}^\mathsf{T} \end{bmatrix} \mathbf{x}$$

- \rightarrow time derivative: $\dot{x} = \left[\frac{d}{d\tau}\hat{\Psi}^{\mathsf{T}} \otimes \hat{\Upsilon}^{\mathsf{T}}\right]\mathbf{x}$
- Space-Time Galerkin Projection:
 - \rightarrow Testfunction $v_{ii} = \hat{\psi}_i \hat{v}_i, j = 1, \dots, \hat{s}, i = 1, \dots, \hat{q}$
 - → Galerkin projection

$$\int_{I} \int_{\Omega} [\hat{\Psi} \otimes \hat{\Upsilon}] [\frac{d}{d\tau} \hat{\Psi}^{\mathsf{T}} \otimes \hat{\Upsilon}^{\mathsf{T}}] \, d\tau \, d\xi \mathbf{x} = -\int_{I} \int_{\Omega} [\hat{\Psi} \otimes \hat{\Upsilon}] \partial_{\xi} ([\hat{\Psi}^{\mathsf{T}} \otimes \hat{\Upsilon}^{\mathsf{T}}] \mathbf{x})^{2} \, d\tau \, d\xi$$

Jan Heiland Space-time Galerkin POD 14/24

Tensorization of Quadratic Nonlinearities

With

$$([\hat{\Psi}^\mathsf{T} \otimes \hat{\Upsilon}^\mathsf{T}] \hat{\boldsymbol{x}})^2 = \hat{\boldsymbol{x}}^\mathsf{T} [\hat{\Psi} \otimes \hat{\Upsilon}] [\hat{\Psi}^\mathsf{T} \otimes \hat{\Upsilon}^\mathsf{T}] \hat{\boldsymbol{x}} = \hat{\boldsymbol{x}}^\mathsf{T} [\hat{\Psi} \hat{\Psi}^\mathsf{T} \otimes \hat{\Upsilon} \hat{\Upsilon}^\mathsf{T}] \hat{\boldsymbol{x}},$$

the ji-th component of the nonlinearity

$$\begin{split} \int_{\mathcal{I}} \int_{\Omega} \hat{v}_{i} \hat{\psi}_{j} \cdot \partial_{\xi} \hat{v}^{2} \, d\tau \, d\xi \\ &= \int_{\mathcal{I}} \int_{\Omega} \hat{v}_{i} \hat{\psi}_{j} \cdot \partial_{\xi} (([\hat{\Psi}^{\mathsf{T}} \otimes \hat{\Upsilon}^{\mathsf{T}}] \hat{\mathbf{x}})^{2}) \, d\tau \, d\xi \\ &= \hat{\mathbf{x}}^{\mathsf{T}} [\int_{I} \hat{v}_{i} \hat{\Psi} \hat{\Psi}^{\mathsf{T}} \, d\tau \otimes \int_{\Omega} \hat{\psi}_{j} \partial_{\xi} (\hat{\Upsilon} \hat{\Upsilon}^{\mathsf{T}})^{2} \, d\xi] \hat{\mathbf{x}}, \end{split}$$

can be efficiently assembled by precomputing

$$\int_{I} \hat{\nu}_{i} \hat{\Psi} \hat{\Psi}^{\mathsf{T}} \, \mathrm{d}\tau \quad \text{and} \quad \int_{\Omega} \hat{\psi}_{j} (\hat{\Upsilon} \partial_{\xi} \hat{\Upsilon}^{\mathsf{T}} + \partial_{\xi} (\hat{\Upsilon}) \hat{\Upsilon}^{\mathsf{T}}) \, \mathrm{d}\xi.$$

- → Exact hyper-reduction!
- → The reduced model is independent of the full dimensions.

Jan Heiland Space-time Galerkin POD 15/24

Target: A Space-time Heart Shape

Figure: Illustration of the state, the adjoint, and the target and their approximation via POD-reduced space-time bases.

Finite Horizon Optimal Control of PDEs

For a target trajectory $x^* \in L^2(I; L^2(\Omega))$ and a penalization parameter $\alpha > 0$, consider

$$\mathcal{J}(x,u) := \frac{1}{2} \|x - x^*\|_{L^2}^2 + \frac{\alpha}{2} \|u\|_{L^2}^2 \to \min_{u \in L^2(I; L^2(\Omega))}$$

subject to the generic PDE

$$\dot{x} - \Delta x + N(x) = f + u, \quad x(0) = 0.$$
 (FWD)

If the nonlinearity is smooth, then necessary optimality conditions for (x, u) are given through $u = \frac{1}{\alpha}\lambda$, where λ solves the adjoint equation

$$-\dot{\lambda} - \Delta \lambda + D_x N(x)^{\mathsf{T}} \lambda + x = x^*, \quad \lambda(T) = 0.$$
 (BWD)

Jan Heiland Space-time Galerkin POD 17/24

Space-time POD for Suboptimal Controls

Algorithm (space-time-pod):

Offline Phase

- Do standard forward/backward solves to compute the matrix of measurements for x and λ.
- 2. Compute optimal low-dimensional spaces \hat{S} , \hat{R} , \hat{Y} , and $\hat{\Lambda}$ for the space and time discretization of the state x and the adjoint state λ .

Online Phase

3. Solve the space-time Galerkin projected necessary optimality conditions (FWD)-(BWD)² for the reduced costate $\hat{\lambda}$.

Evaluation

 \rightarrow Inflate $\hat{\mathbf{u}} := \frac{1}{\alpha}\hat{\lambda}$ and apply it in the full order simulation.

Jan Heiland Space-time Galerkin POD 18/24

²(FWD)-(BWD) is a two-point boundary value problem with initial and terminal conditions for which time stepping schemes like RKM do not apply.

Benchmark: POD and SQP

Algorithm (sqp-pod):

Offline Phase

- Do standard forward/backward solves to compute the matrix of measurements for x.
- 2. Compute optimal low-dimensional space $\hat{\mathcal{Y}}$ of dimension \hat{q} via POD.
- 3. Identify a (manually optimized) time grid of size n_t on which the input is linearly interpolated
- o suboptimal control as minimizer $\hat{\mathbf{u}} \in \mathbb{R}^{\hat{q} \cdot n_t}$ of $\hat{\mathcal{J}}(\mathbf{u}) := \mathcal{J}(x(\mathbf{u}), \mathbf{u})$.

Online Phase

4. Solve $\hat{\mathcal{J}}(\mathbf{u}) \to \min_{\mathbf{u} \in \mathbb{R}^{\hat{q} \cdot n_t}} \text{ by SQP with BFGS}^3 \text{ for } \hat{\mathbf{u}} \in \mathbb{R}^{\hat{q} \cdot n_t}$

Evaluation

 \rightarrow Inflate $\hat{\mathbf{u}}$ and apply it in the full order simulation.

Jan Heiland Space-time Galerkin POD 19/24

³here we use MINPACK routines as interfaced in the SciPy optimization module

Numerical Setup

The PDE

- 1D Burger's equation
- $I = (0,1], \Omega = (0,1)$
- Viscosity: $v = 5 \cdot 10^{-3}$
- Stepfunction as initial value
- Zero Dirichlet conditions

The optimization

- $\alpha = 10^{-3}$ (space-time-pod)
- $\alpha = 6 \cdot 10^{-5} \text{ (sqp-pod)}$

The full model

- Equidistant space and time grids
- $S = \mathcal{R}$... 120 linear hat functions
- $\mathcal{Y} = \Lambda$... 220 linear hat functions

The reduced model

- $\hat{\mathcal{Y}} = \hat{\Lambda} \dots$ of dimension $\hat{q} = \hat{p}$
- $\hat{S} \neq \hat{R}$... of dimensions $\hat{s} = \hat{r}$
- \hat{q} , \hat{p} , \hat{s} , \hat{r} ... varying
- \blacksquare n_t ... varying

Performance of the Suboptimal Control

Caption:

The achieved tracking vs. the time needed to compute the suboptimal controls by means of

♡, ♡ ... sqp-pod

, ♥ ... space-time-pod.

Parameters:

$$\hat{K}:\leftrightarrow \hat{q},\hat{p},\hat{r},\hat{s}=rac{\hat{K}}{4}$$

$$(\hat{q},\hat{s})=(\hat{p},\hat{r})$$

Conclusion

- The space-time Galerkin POD approach allows for
 - construction of optimized Galerkin bases in space and time
 - in a functional analytical framework
- The resulting space-time Galerkin discretization
 - approximates PDEs by a small system of algebraic equations
 - and naturally extends to boundary value problems in time
 - can be used for efficient computations of (sub)optimal controls
- Future work:
 - Use the functional analytical framework for error estimates.
 - lacksquare Exploit the freedom of the choice of the measurement functions in $\mathcal{Y},$
 - to produce, e.g., optimal measurements or to compensate for stochastic perturbations.

Further Reading and Coding

M. Baumann, P. Benner, and J. Heiland.

Space-Time Galerkin POD with application in optimal control of semi-linear parabolic partial differential equations. SIAM J. Sci. Comput. (40). 2018.

M. Baumann, J. Heiland, and M. Schmidt.

Discrete input/output maps and their relation to POD.

In P. Benner et al., editors, *Numerical Algebra, Matrix Theory*, *Differential-Algebraic Equations and Control Theory*. Springer, 2015.

J. Heiland and M. Baumann.

spacetime-galerkin-pod-bfgs-tests – Python/Matlab implementation space-time POD and BFGS for optimal control of Burgers equation. 2016, doi:10.5281/zenodo.166339.

Thank you!

Thank you for your attention!

I am always open for discussion

heiland@mpi-magdeburg.mpg.de www.janheiland.de github.com/highlando