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Motivation
Full-waveform inversion

PDE-constrained optimization:

min
ρ(x),cp(x),cs(x)

‖usim − umeas‖,

where in our application:

usim is the (numerical) solution of the elastic wave
equation,

umeas is obtained from measurements,

ρ(x) is the density of the earth layers we are interested in.

The modelling is done in frequency-domain...
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Motivation
Modelling in frequency-domain

Frequency-domain approach:

The time-harmonic elastic wave equation

For many (angular) frequencies ωk , we solve

−ω2
kρ(x)û−∇ · σ(û, cp, cs) = ŝ, x ∈ Ω ⊂ R2,3,

together with absorbing or reflecting boundary conditions.

Inverse (discrete) Fourier transform:

u(x, t) =
∑
k

û(x, ωk)e iωk t
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Motivation
Shifted linear systems

The discretized time-harmonic elastic wave equation is
quadratic in ωk :

(K + iωkC − ω2
kM)û = ŝ,

which can be re-arranged as,[(
iM−1C M−1K

I 0

)
− ωk

(
I 0
0 I

)](
ωk û
û

)
=

(
M−1ŝ

0

)
.

The latter is of the form:

(A− ωk I )xk = b, k = 1, ...,N.

↪→ movie
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What’s a shifted linear system?

Definition

Shifted linear systems are of the form

(A− ωI )x(ω) = b,

where ω ∈ C is the shift.

For the simultaneous solution, Krylov methods are well-suited
because of the shift-invariance property:

Km(A,b) ≡ span{b,Ab, ...,Am−1b} = Km(A− ωI ,b).

“Proof”(shift-invariance)

For m = 2: K2(A,b) = span{b,Ab}
K2(A− ωI ,b) = span{b,Ab− ωb} = span{b,Ab}
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For example, multi-shift GMRES

After m steps of Arnoldi, we have,

AVm = Vm+1Hm,

and the approximate solution yields:

xm ≈ Vmym, where ym = argmin
y∈Cm

‖Hmy − ‖b‖e1‖ .

For shifted systems, we get

(A− ωI )Vm = Vm+1(Hm − ωIm),

and, therefore,

x
(ω)
m ≈ Vmy

(ω)
m , where y

(ω)
m = argmin

y∈Cm

∥∥∥H
(ω)
m y − ‖b‖e1

∥∥∥ .
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Preconditioning is a problem

Main disadvantage:

Preconditioners are in general not easy to apply. For

(A− ωI )P−1ω y(ω) = b, Pωx(ω) = y(ω)

it does not hold:

Km(AP−1,b) 6= Km(AP−1ω − ωP−1ω ,b).

However, there are ways...

Reference
B. Jegerlehner, Krylov space solvers for shifted linear systems. Published
online arXiv:hep-lat/9612014, 1996.
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Preconditioning is a problem
... or has been a problem ?

Short historical overview:

2002 Shift-and-invert preconditioner:

P = (A− τ I ), τ ≈ {ω1, ..., ωN}

2007 Many shift-and-invert preconditioners:

Pj = (A− τj I )

2013 Polynomial preconditioners:

pn(A) ≈ A−1, pωn (A) ≈ (A− ωI )−1

2014 Nested Krylov methods
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Shift-and-invert preconditioner

Choose P ≡ (A− τ I ). Then,

(A− ωI )P−1ω = AP−1 − ηωI
= A(A− τ I )−1 − ηωI
= [A− ηω(A− τ I )] (A− τ I )−1

=

[
A +

ηωτ

1− ηω
I

]
(1− ηω)(A− τ I )−1.

From the fit ω = − ηωτ
1−ηω , we conclude

ηω =
ω

ω − τ
, Pω =

1

1− ηω
P =

τ − ω
τ
P.
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Polynomial preconditioners - Theory

Suppose we have found,

pn(A) ≡
n∑

i=0

αiA
i ≈ A−1

Question: Can we find pωn (A) ≡
∑n

i=0 α
ω
i A

i such that

(A− ωI )pωn (A) = Apn(A)− ηωI ?

Reference
M. I. Ahmad, D. B. Szyld, and M. B. van Gijzen, Preconditioned multishift
BiCG for H2-optimal model reduction. Technical report, 2013.
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Polynomial preconditioners - Theory

From

(A− ωI )pωn (A) = Apn(A)− ηωI

we get

n∑
i=0

αωi A
i+1 −

n∑
i=0

ωαωi A
i −

n∑
i=0

αiA
i+1 + ηωI = 0

The latter can be solved to:

αωn = αn

αωi−1 = αi−1 + ωαωi , for i = n, ..., 1

ηω = ωαω0
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Polynomial preconditioners - In practice

What goes wrong in practice?

Use Chebyshev polynomials for pn(A) ≈ A−1.
I Based on ellipse that surrounds the spectrum of A,
I Does not work for indefinite matrix A.

Instead, approximate the shift-and-invert preconditioner
pn(A) ≈ (A− τ I )−1, i.e. shift the spectrum.

For Helmholtz, this resembles an approximate shifted
Laplace preconditioner.
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Polynomial preconditioners - Example (1/2)

Acoustic wave propagation (Helmholtz equation):

−∆p −
(

2πfk
c(x)

)
p = s

s = δ(x1 − 300, x2)

x−axis [m]

d
e

p
th

 [
m

]

Velocity profile c(x)
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We prescribe absorbing boundary conditions (Sommerfeld
conditions).
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Polynomial preconditioners - Example (2/2)

We consider 5 different meshes:

Grid h[m] gridpoints fk [Hz] No prec. Exact prec. PP n = 3
1 100 77 1 179 77 87
2 100/2 273 1,2 457 156 194
3 100/4 1025 1,2,4 1160 319 457
4 100/8 3969 1,2,4,8 4087 788 1115
5 100/16 15617 1,2,4,8,16 9994 1830 2429

MS-QMRIDR(8), Seed: τ = (1− 8i)2πfmax

Note: we have to use a shift with a large imaginary part to
obtain a converging Chebyshev polynomial.

[Ongoing Research]
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Nested multi-shift Krylov methods

Methodology:

We have learned: Polynomial preconditioners exist

Question: Can we use a Krylov polynomial?

Nested multi-shift Krylov methods:

Use an inner multi-shift Krylov method as preconditioner.

For inner method, require collinear residuals [r
(ω)
j = γrj ].

This is the case for:
I multi-shift GMRES [1998]
I multi-shift FOM [2003]
I multi-shift BiCG [2003]
I multi-shift IDR(s) [new!]

Using γ, we can preserve the shift-invariance in the outer
Krylov iteration.
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Nested multi-shift Krylov methods

Overview of one possible combination:
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Multi-shift FOM as inner method

Classical result: In FOM, the residuals are

rj = b− Axj = ... = −hj+1,je
T
j yjvj+1.

Thus, for the shifted residuals it holds:

r
(ω)
j = b− (A− ωI )x(ω)j = ... = −h(ω)j+1,je

T
j y

(ω)
j vj+1,

which gives γ = y
(ω)
j /yj .

Reference
V. Simoncini, Restarted full orthogonalization method for shifted linear
systems. BIT Numerical Mathematics, 43 (2003).
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Flexible multi-shift GMRES as outer method

Use flexible GMRES in the outer loop,

(A− ωI )V̂m = Vm+1H
(ω)
m ,

where one column yields

(A− ωI )P(ω)−1j vj︸ ︷︷ ︸
inner loop

= Vm+1h
(ω)
j , 1 ≤ j ≤ m.

The “inner loop” is the truncated solution of (A− ωI ) with
right-hand side vj using msFOM.
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Flexible multi-shift GMRES

The inner residuals are:

r
(ω)
j = vj − (A− ωI )P(ω)−1j vj ,

rj = vj − AP−1j vj ,

Imposing r
(ω)
j = γrj yields:

(A− ωI )P(ω)−1j vj = γAP−1j vj − (γ − 1)vj (∗)

Note that the right-hand side in (∗) is a preconditioned shifted
system!
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Flexible multi-shift GMRES

Altogether,

(A− ωI )P(ω)−1j vj = Vm+1h
(ω)
j

γAP−1j vj − (γ − 1)vj = Vm+1h
(ω)
j

γVm+1hj − Vm+1 (γ − 1) ej = Vm+1h
(ω)
j

Vm+1

(
γhj − (γ − 1) ej

)
= Vm+1h

(ω)
j

which yields:

H
(ω)
m = (Hm − Im) Γm + Im,

with Γm := diag(γ1, ..., γm).
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A first example - The setting

Test case from literature:

Ω = [0, 1]× [0, 1]

h = 0.01 implying
n = 10.201 grid points

system size:
4n = 40.804

N = 6 frequencies

point source at center

Reference

T. Airaksinen, A. Pennanen, and J. Toivanen, A damping
preconditioner for time-harmonic wave equations in fluid and elastic
material. Journal of Computational Physics, 2009.
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A first example - Convergence behavior (1/2)

Preconditioned multi-shift GMRES:

0 10 20 30 40 50 60 70 80 90 100 110
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# iterations
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n
o
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multi−shift GMRES convergence

 

 

f = 5,000
f = 10,000
f = 15,000
f = 20,000
f = 25,000
f = 30,000

We observe:

simultaneous
solve

CPU time:
17.71s
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A first example - Convergence behavior (2/2)

Preconditioned nested FOM-FGMRES:
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Outer msGMRES convergence

f = 5,000
f = 10,000
f = 15,000
f = 20,000
f = 25,000
f = 30,000

We observe:

30 inner iterations

truncate when inner
residual norm ∼ 0.1

very few outer
iterations

CPU time: 9.62s
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A first example - More nested methods

We were running the same setting with different (nested)
multi-shift Krylov methods:

multi-shift Krylov methods
msGMRES rest msGMRES QMRIDR(4) msIDR(4)

# inner iterations - 20 - -
# outer iterations 103 7 136 134

seed shift τ 0.7-0.7i 0.7-0.7i 0.7-0.7i 0.7-0.7i
CPU time 17.71s 6.13s 22.35s 22.58s

nested multi-shift Krylov methods
FOM-FGMRES IDR(4)-FGMRES FOM-FQMRIDR(4) IDR(4)-FQMRIDR(4)

# inner iterations 30 25 30 30
# outer iterations 7 9 5 15

seed shift τ 0.7-0.7i 0.7-0.7i 0.7-0.7i 0.7-0.7i
CPU time 9.62s 32.99s 8.14s 58.36s
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Summary

3 Nested Krylov methods for Ax = b are widely used
↪→ extension to shifted linear systems is possible

3 Multiple combinations of inner-outer methods possible,
e.g. FOM-FGMRES, IDR-FQMRIDR, ...

3 The shift-and-invert preconditioner (or the polynomial
preconditioner) can be applied on top

7 Future work: recylcing, deflation, ...
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Thank you for your attention!

Further reading:

M. Baumann and M. B. van Gijzen. Nested Krylov methods
for shifted linear systems. DIAM technical report 14-01,
2014.

Further coding:

https://bitbucket.org/ManuelMBaumann/nestedkrylov
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IDR(s) in a nutshell

IDR(s) is a Krylov subspace method that enforces the residuals
rn to be,

Gj+1 3 rn+1 = (I − µj+1A)vn, with vn ∈ Gj ∩ P⊥,

where µj+1 ∈ C \ {0} and P = [p1, ...,ps ] are chosen freely.

The IDR theorem states:

1 Gj+1 ⊂ Gj for all j ≥ 0,

2 Gj = {0} for some j ≤ N.

Reference

P. Sonneveld, M. B. van Gijzen, IDR(s): A family of simple and fast
algorithms for solving large nonsymmetric systems of linear equations.
SIAM J. Sci. Comput., 2008.
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IDR(s) with collinear residuals

Notation: Let’s call Â ≡ (A− ωI ) and r̂n, µ̂j+1, v̂n, ...

Assuming, we have v̂n = αnvn (not trivial!), then we want:

γn+1rn+1 = r̂n+1

γn+1 (I − µj+1A) vn =
(
I − µ̂j+1Â

)
v̂n

γn+1 (I − µj+1A) vn = (I − µ̂j+1(A− ωI ))αnvn

γn+1vn − γn+1µj+1Avn = (αn + αnµ̂j+1ω)vn − αnµ̂j+1Avn

Choose µ̂j+1 and γn+1 such that the two terms match:

µ̂j+1 =
µj+1

1− ωµj+1
, γn+1 =

αn

1− ωµj+1
.
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γn+1vn − γn+1µj+1Avn = (αn + αnµ̂j+1ω)vn − αnµ̂j+1Avn

Choose µ̂j+1 and γn+1 such that the two terms match:

µ̂j+1 =
µj+1

1− ωµj+1
, γn+1 =

αn

1− ωµj+1
.
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