Nested Krylov methods for shifted linear systems

M. Baumann^{*,†} and M. B. van Gijzen[†]

*Email: M.M.Baumann@tudelft.nl [†]Delft Institute of Applied Mathematics Delft University of Technology Delft, The Netherlands

University of Wuppertal - September 25, 2014

Motivation

Full-waveform inversion

PDE-constrained optimization:

$$\min_{\boldsymbol{\rho}(\mathbf{x}), \boldsymbol{c}_{\boldsymbol{\rho}}(\mathbf{x}), \boldsymbol{c}_{s}(\mathbf{x})} \| \mathbf{u}_{sim} - \mathbf{u}_{meas} \|,$$

where in our application:

- **u**_{sim} is the (numerical) solution of the elastic wave equation,
- **u**_{meas} is obtained from measurements,
- $\rho(\mathbf{x})$ is the density of the earth layers we are interested in.

The modelling is done in frequency-domain...

Motivation Modelling in frequency-domain

Frequency-domain approach:

The time-harmonic elastic wave equation For **many** (angular) frequencies ω_k , we solve

$$-\omega_k^2
ho(\mathbf{x})\hat{\mathbf{u}} -
abla \cdot \sigma(\hat{\mathbf{u}}, c_p, c_s) = \hat{\mathbf{s}}, \quad \mathbf{x} \in \Omega \subset \mathbb{R}^{2,3},$$

together with absorbing or reflecting boundary conditions.

Inverse (discrete) Fourier transform:

$$\mathbf{u}(\mathbf{x},t) = \sum_{k} \hat{\mathbf{u}}(\mathbf{x},\omega_{k}) e^{i\omega_{k}t}$$

· • @ • • Ξ • • Ξ •

Motivation Shifted linear systems

The **discretized** time-harmonic elastic wave equation is quadratic in ω_k :

$$(K+i\omega_k C-\omega_k^2 M)\underline{\hat{\mathbf{u}}}=\underline{\hat{\mathbf{s}}},$$

which can be re-arranged as,

$$\begin{bmatrix} \begin{pmatrix} iM^{-1}C & M^{-1}K \\ I & 0 \end{pmatrix} - \omega_k \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \end{bmatrix} \begin{pmatrix} \omega_k \hat{\mathbf{u}} \\ \hat{\mathbf{u}} \end{pmatrix} = \begin{pmatrix} M^{-1} \hat{\mathbf{s}} \\ 0 \end{pmatrix}.$$

The latter is of the form:

$$(A - \omega_k I)\mathbf{x}_k = \mathbf{b}, \quad \mathbf{k} = 1, ..., N.$$

 \hookrightarrow movie

Motivation Shifted linear systems

The **discretized** time-harmonic elastic wave equation is quadratic in ω_k :

$$(K+i\omega_k C-\omega_k^2 M)\underline{\hat{\mathbf{u}}}=\underline{\hat{\mathbf{s}}},$$

which can be re-arranged as,

$$\begin{bmatrix} \begin{pmatrix} iM^{-1}C & M^{-1}K \\ I & 0 \end{pmatrix} - \omega_k \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} \end{bmatrix} \begin{pmatrix} \omega_k \hat{\mathbf{u}} \\ \hat{\mathbf{u}} \end{pmatrix} = \begin{pmatrix} M^{-1} \hat{\mathbf{s}} \\ 0 \end{pmatrix}.$$

The latter is of the form:

$$(A - \omega_k I)\mathbf{x}_k = \mathbf{b}, \quad \mathbf{k} = 1, ..., N.$$

 \hookrightarrow movie

Outline

- 2 Multi-shift Krylov methods
- Olynomial preconditioners
- 4 Nested multi-shift Krylov methods
- 5 Numerical results

< □ ▶

· • @ • • Ξ • • Ξ •

What's a shifted linear system?

Definition Shifted linear systems are of the form $(A - \omega I)\mathbf{x}^{(\omega)} = \mathbf{b},$

where $\omega \in \mathbb{C}$ is the *shift*.

For the simultaneous solution, **Krylov methods** are well-suited because of the *shift-invariance* property:

 $\mathcal{K}_m(A, \mathbf{b}) \equiv \operatorname{span}\{\mathbf{b}, A\mathbf{b}, ..., A^{m-1}\mathbf{b}\} = \mathcal{K}_m(A - \omega I, \mathbf{b}).$

"Proof" (shift-invariance)

For
$$m = 2$$
: $\mathcal{K}_2(A, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, A\mathbf{b}\}\$
 $\mathcal{K}_2(A - \omega I, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, A\mathbf{b} - \omega \mathbf{b}\} = \operatorname{span}\{\mathbf{b}, A\mathbf{b}\}$

· • @ • • = • • = •

What's a shifted linear system?

Definition Shifted linear systems are of the form $(A - \omega I)\mathbf{x}^{(\omega)} = \mathbf{b},$

where $\omega \in \mathbb{C}$ is the *shift*.

For the simultaneous solution, **Krylov methods** are well-suited because of the *shift-invariance* property:

$$\mathcal{K}_m(A, \mathbf{b}) \equiv \operatorname{span}\{\mathbf{b}, A\mathbf{b}, ..., A^{m-1}\mathbf{b}\} = \mathcal{K}_m(A - \omega I, \mathbf{b}).$$

"Proof" (shift-invariance) For m = 2: $\mathcal{K}_2(A, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, A\mathbf{b}\}$ $\mathcal{K}_2(A - \omega I, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, A\mathbf{b} - \omega \mathbf{b}\} = \operatorname{span}\{\mathbf{b}, A\mathbf{b}\}$

</₽> < E> < E>

What's a shifted linear system?

Definition Shifted linear systems are of the form $(A - \omega I)\mathbf{x}^{(\omega)} = \mathbf{b},$

where $\omega \in \mathbb{C}$ is the *shift*.

For the simultaneous solution, **Krylov methods** are well-suited because of the *shift-invariance* property:

$$\mathcal{K}_m(A, \mathbf{b}) \equiv \operatorname{span}\{\mathbf{b}, A\mathbf{b}, ..., A^{m-1}\mathbf{b}\} = \mathcal{K}_m(A - \omega I, \mathbf{b}).$$

"Proof" (shift-invariance)
For
$$m = 2$$
: $\mathcal{K}_2(A, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, A\mathbf{b}\}$
 $\mathcal{K}_2(A - \omega I, \mathbf{b}) = \operatorname{span}\{\mathbf{b}, A\mathbf{b} - \omega \mathbf{b}\} = \operatorname{span}\{\mathbf{b}, A\mathbf{b}\}$

· • @ • • = • • = •

For example, multi-shift GMRES

After *m* steps of Arnoldi, we have,

$$AV_m = V_{m+1}\underline{H}_m,$$

and the approximate solution yields:

$$\mathbf{x}_m pprox V_m \mathbf{y}_m, \quad ext{where } \mathbf{y}_m = \operatorname*{argmin}_{\mathbf{y} \in \mathbb{C}^m} \| \underline{\mathbf{H}}_m \mathbf{y} - \| \mathbf{b} \| \mathbf{e}_1 \| \, .$$

For shifted systems, we get

$$(A - \omega I)V_m = V_{m+1}(\underline{\mathbf{H}}_m - \omega \underline{\mathbf{I}}_m),$$

and, therefore,

$$\mathbf{x}_m^{(\omega)} pprox V_m \mathbf{y}_m^{(\omega)}, \quad ext{where } \mathbf{y}_m^{(\omega)} = \operatorname*{argmin}_{\mathbf{y} \in \mathbb{C}^m} \left\| \underline{\mathsf{H}}_m^{(\omega)} \mathbf{y} - \| \mathbf{b} \| \mathbf{e_1} \right\|.$$

< /⊒ ► < ≣

For example, multi-shift GMRES

After *m* steps of Arnoldi, we have,

$$AV_m = V_{m+1}\underline{H}_m,$$

and the approximate solution yields:

$$\mathbf{x}_m pprox V_m \mathbf{y}_m, \quad ext{where } \mathbf{y}_m = \operatorname*{argmin}_{\mathbf{y} \in \mathbb{C}^m} \| \underline{\mathbf{H}}_m \mathbf{y} - \| \mathbf{b} \| \mathbf{e}_1 \| \, .$$

For shifted systems, we get

$$(A - \omega I)V_m = V_{m+1}(\underline{\mathsf{H}}_m - \omega \underline{\mathsf{I}}_m),$$

and, therefore,

$$\mathbf{x}_m^{(\omega)} pprox V_m \mathbf{y}_m^{(\omega)}, \quad ext{where } \mathbf{y}_m^{(\omega)} = \operatorname*{argmin}_{\mathbf{y} \in \mathbb{C}^m} \left\| \underline{\mathbf{H}}_m^{(\omega)} \mathbf{y} - \| \mathbf{b} \| \mathbf{e}_1
ight\|.$$

TUDelft

For example, multi-shift GMRES

After *m* steps of Arnoldi, we have,

$$AV_m = V_{m+1}\underline{H}_m,$$

and the approximate solution yields:

$$\mathbf{x}_m pprox \mathbf{V}_m \mathbf{y}_m$$
, where $\mathbf{y}_m = \operatorname*{argmin}_{\mathbf{y} \in \mathbb{C}^m} \|\underline{\mathbf{H}}_m \mathbf{y} - \|\mathbf{b}\| \mathbf{e}_1 \|$.

For shifted systems, we get

$$(A - \omega I)V_m = V_{m+1}(\underline{\mathbf{H}}_m - \omega \underline{\mathbf{I}}_m),$$

and, therefore,

$$\mathbf{x}_m^{(\omega)} pprox \mathbf{V}_m \mathbf{y}_m^{(\omega)}, \quad ext{where } \mathbf{y}_m^{(\omega)} = \operatorname*{argmin}_{\mathbf{y} \in \mathbb{C}^m} \left\| \underline{\mathbf{H}}_m^{(\omega)} \mathbf{y} - \| \mathbf{b} \| \mathbf{e}_1 \right\|.$$

TUDelft

Preconditioning is a problem

Main disadvantage:

Preconditioners are in general not easy to apply. For

$$(A - \omega I)\mathcal{P}_{\omega}^{-1}\mathbf{y}^{(\omega)} = \mathbf{b}, \quad \mathcal{P}_{\omega}\mathbf{x}^{(\omega)} = \mathbf{y}^{(\omega)}$$

it does not hold:

$$\mathcal{K}_m(\mathcal{AP}^{-1},\mathbf{b})\neq\mathcal{K}_m(\mathcal{AP}^{-1}_\omega-\omega\mathcal{P}^{-1}_\omega,\mathbf{b}).$$

However, there are ways...

Reference

B. Jegerlehner, *Krylov space solvers for shifted linear systems*. Published online arXiv:hep-lat/9612014, 1996.

Preconditioning is a problem

Main disadvantage:

Preconditioners are in general not easy to apply. For

$$(A - \omega I)\mathcal{P}_{\omega}^{-1}\mathbf{y}^{(\omega)} = \mathbf{b}, \quad \mathcal{P}_{\omega}\mathbf{x}^{(\omega)} = \mathbf{y}^{(\omega)}$$

it does not hold:

$$\mathcal{K}_m(\mathcal{AP}^{-1},\mathbf{b})\neq\mathcal{K}_m(\mathcal{AP}^{-1}_\omega-\omega\mathcal{P}^{-1}_\omega,\mathbf{b}).$$

However, there are ways...

Reference

B. Jegerlehner, *Krylov space solvers for shifted linear systems*. Published online arXiv:hep-lat/9612014, 1996.

Preconditioning is a problem

... or has been a problem ?

Short historical overview:

2002 Shift-and-invert preconditioner:

$$\mathcal{P} = (\mathbf{A} - \tau \mathbf{I}), \quad \tau \approx \{\omega_1, ..., \omega_N\}$$

2007 Many shift-and-invert preconditioners:

$$\mathcal{P}_j = (A - \tau_j I)$$

2013 Polynomial preconditioners:

$$p_n(A) \approx A^{-1}, \quad p_n^{\omega}(A) \approx (A - \omega I)^{-1}$$

2014 Nested Krylov methods

Shift-and-invert preconditioner

Choose $\mathcal{P} \equiv (A - \tau I)$. Then,

$$(A - \omega I)\mathcal{P}_{\omega}^{-1} = A\mathcal{P}^{-1} - \eta_{\omega}I$$

= $A(A - \tau I)^{-1} - \eta_{\omega}I$
= $[A - \eta_{\omega}(A - \tau I)](A - \tau I)^{-1}$
= $\left[A + \frac{\eta_{\omega}\tau}{1 - \eta_{\omega}}I\right](1 - \eta_{\omega})(A - \tau I)^{-1}.$

From the fit $\omega = -\frac{\eta_\omega \tau}{1-\eta_\omega}$, we conclude

$$\eta_{\omega} = rac{\omega}{\omega - au}, \quad \mathcal{P}_{\omega} = rac{1}{1 - \eta_{\omega}} \mathcal{P} = rac{ au - \omega}{ au} \mathcal{P}.$$

M. Baumann

(日) (同) (三) (三)

Polynomial preconditioners - Theory

Suppose we have found,

$$p_n(A) \equiv \sum_{i=0}^n \alpha_i A^i \approx A^{-1}$$

Question: Can we find $p_n^{\omega}(A) \equiv \sum_{i=0}^n \alpha_i^{\omega} A^i$ such that

$$(A - \omega I)p_n^{\omega}(A) = Ap_n(A) - \eta_{\omega}I$$
?

Reference

M. I. Ahmad, D. B. Szyld, and M. B. van Gijzen, *Preconditioned multishift* BiCG for \mathcal{H}_2 -optimal model reduction. Technical report, 2013.

Polynomial preconditioners - Theory

Suppose we have found,

$$p_n(A) \equiv \sum_{i=0}^n \alpha_i A^i \approx A^{-1}$$

Question: Can we find $p_n^{\omega}(A) \equiv \sum_{i=0}^n \alpha_i^{\omega} A^i$ such that

$$(A - \omega I)p_n^{\omega}(A) = Ap_n(A) - \eta_{\omega}I$$
?

Reference

M. I. Ahmad, D. B. Szyld, and M. B. van Gijzen, *Preconditioned multishift* BiCG for \mathcal{H}_2 -optimal model reduction. Technical report, 2013.

Polynomial preconditioners - Theory

From

$$(A - \omega I)p_n^{\omega}(A) = Ap_n(A) - \eta_{\omega}I$$

we get

The latter can be solved to:

$$\begin{split} \alpha_{n}^{\omega} &= \alpha_{n} \\ \alpha_{i-1}^{\omega} &= \alpha_{i-1} + \omega \alpha_{i}^{\omega}, \quad \text{for } i = n, ..., 1 \\ \eta_{\omega} &= \omega \alpha_{0}^{\omega} \end{split}$$

M. Baumann

▶ <**@**▶ <ె> < 3

Polynomial preconditioners - In practice

What goes wrong in practice?

- Use Chebyshev polynomials for $p_n(A) \approx A^{-1}$.
 - Based on ellipse that surrounds the spectrum of A,
 - Does not work for indefinite matrix A.
- Instead, approximate the shift-and-invert preconditioner $p_n(A) \approx (A \tau I)^{-1}$, i.e. shift the spectrum.
- For Helmholtz, this resembles an approximate shifted Laplace preconditioner.

M. Baumann

Polynomial preconditioners - Example (1/2)

Acoustic wave propagation (Helmholtz equation):

We prescribe absorbing boundary conditions (Sommerfeld conditions).

Polynomial preconditioners - Example (2/2)

We consider 5 different meshes:

Grid	h[m]	gridpoints	$f_k[Hz]$	No prec.	Exact prec.	PP <i>n</i> = 3
1	100	77	1	179	77	87
2	100/2	273	1,2	457	156	194
3	100/4	1025	1,2,4	1160	319	457
4	100/8	3969	1,2,4,8	4087	788	1115
5	100/16	15617	1,2,4,8,16	9994	1830	2429

- MS-QMRIDR(8), Seed: $\tau = (1 8i)2\pi f_{max}$
- Note: we have to use a shift with a large imaginary part to obtain a converging Chebyshev polynomial.

[Ongoing Research]

< /⊒ > < ≣

Nested multi-shift Krylov methods

Methodology:

- We have learned: Polynomial preconditioners exist
- Question: Can we use a Krylov polynomial?

Nested multi-shift Krylov methods:

- Use an inner multi-shift Krylov method as preconditioner.
- For inner method, require collinear residuals $[\mathbf{r}_{j}^{(\omega)} = \gamma \mathbf{r}_{j}]$. This is the case for:
 - multi-shift GMRES [1998]
 - multi-shift FOM [2003]
 - multi-shift BiCG [2003]
 - multi-shift IDR(s) [new!
- Using γ, we can preserve the shift-invariance in the outer Krylov iteration.

Nested multi-shift Krylov methods

Methodology:

- We have learned: Polynomial preconditioners exist
- Question: Can we use a Krylov polynomial?

Nested multi-shift Krylov methods:

• Use an inner multi-shift Krylov method as preconditioner.

• For inner method, require collinear residuals $[\mathbf{r}_{j}^{(\omega)} = \gamma \mathbf{r}_{j}]$. This is the case for:

- multi-shift GMRES [1998]
- multi-shift FOM [2003]
- multi-shift BiCG [2003]
- multi-shift IDR(s) [new!]
- Using γ , we can preserve the shift-invariance in the outer Krylov iteration.

Nested multi-shift Krylov methods

Overview of one possible combination:

Multi-shift FOM as inner method

Classical result: In FOM, the residuals are

$$\mathbf{r}_j = \mathbf{b} - A\mathbf{x}_j = \dots = -h_{j+1,j}\mathbf{e}_j^T\mathbf{y}_j\mathbf{v}_{j+1}.$$

Thus, for the shifted residuals it holds:

$$\mathbf{r}_{j}^{(\omega)} = \mathbf{b} - (A - \omega I)\mathbf{x}_{j}^{(\omega)} = \dots = -h_{j+1,j}^{(\omega)}\mathbf{e}_{j}^{\mathsf{T}}\mathbf{y}_{j}^{(\omega)}\mathbf{v}_{j+1}$$

which gives $\gamma = y_j^{(\omega)}/y_j$.

Reference

V. Simoncini, *Restarted full orthogonalization method for shifted linear systems.* BIT Numerical Mathematics, 43 (2003).

Flexible multi-shift GMRES as outer method

Use flexible GMRES in the outer loop,

$$(A-\omega I)\widehat{V}_m=V_{m+1}\underline{H}_m^{(\omega)},$$

where one column yields

$$(A - \omega I) \underbrace{\mathcal{P}(\omega)_j^{-1} \mathbf{v}_j}_{\text{inner loop}} = V_{m+1} \underline{\mathbf{h}}_j^{(\omega)}, \quad 1 \leq j \leq m.$$

The "inner loop" is the truncated solution of $(A - \omega I)$ with right-hand side \mathbf{v}_i using msFOM.

Flexible multi-shift GMRES as outer method

Use flexible GMRES in the outer loop,

$$(A-\omega I)\widehat{V}_m=V_{m+1}\underline{H}_m^{(\omega)},$$

where one column yields

$$(A - \omega I) \underbrace{\mathcal{P}(\omega)_j^{-1} \mathbf{v}_j}_{\text{inner loop}} = V_{m+1} \underline{\mathbf{h}}_j^{(\omega)}, \quad 1 \leq j \leq m.$$

The "inner loop" is the truncated solution of $(A - \omega I)$ with right-hand side \mathbf{v}_i using msFOM.

The inner residuals are:

$$\mathbf{r}_{j}^{(\omega)} = \mathbf{v}_{j} - (A - \omega I)\mathcal{P}(\omega)_{j}^{-1}\mathbf{v}_{j},$$

$$\mathbf{r}_{j} = \mathbf{v}_{j} - A\mathcal{P}_{j}^{-1}\mathbf{v}_{j},$$

Imposing
$$\mathbf{r}_{i}^{(\omega)} = \gamma \mathbf{r}_{j}$$
 yields:

$$(A - \omega I)\mathcal{P}(\omega)_j^{-1}\mathbf{v}_j = \gamma A \mathcal{P}_j^{-1}\mathbf{v}_j - (\gamma - 1)\mathbf{v}_j \qquad (*)$$

Note that the right-hand side in (*) is a preconditioned shifted system!

The inner residuals are:

$$\mathbf{r}_{j}^{(\omega)} = \mathbf{v}_{j} - (A - \omega I)\mathcal{P}(\omega)_{j}^{-1}\mathbf{v}_{j},$$

$$\mathbf{r}_{j} = \mathbf{v}_{j} - A\mathcal{P}_{j}^{-1}\mathbf{v}_{j},$$

Imposing
$$\mathbf{r}_{j}^{(\omega)} = \gamma \mathbf{r}_{j}$$
 yields:
 $(A - \omega I)\mathcal{P}(\omega)_{j}^{-1}\mathbf{v}_{j} = \gamma A \mathcal{P}_{j}^{-1}\mathbf{v}_{j} - (\gamma - 1)\mathbf{v}_{j}$ (*)

Note that the right-hand side in (*) is a preconditioned shifted system!

Altogether,

$$(A - \omega I)\mathcal{P}(\omega)_{j}^{-1}\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$\gamma A\mathcal{P}_{j}^{-1}\mathbf{v}_{j} - (\gamma - 1)\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$\gamma V_{m+1}\underline{\mathbf{h}}_{j} - V_{m+1}(\gamma - 1)\underline{\mathbf{e}}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$V_{m+1}(\gamma \underline{\mathbf{h}}_{j} - (\gamma - 1)\underline{\mathbf{e}}_{j}) = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$

which yields:

$$\underline{\mathbf{H}}_{m}^{(\omega)} = (\underline{\mathbf{H}}_{m} - \underline{\mathbf{I}}_{m})\,\mathbf{\Gamma}_{m} + \underline{\mathbf{I}}_{m},$$

with $\Gamma_m := diag(\gamma_1, ..., \gamma_m)$.

Altogether,

$$(A - \omega I)\mathcal{P}(\omega)_{j}^{-1}\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$\gamma A\mathcal{P}_{j}^{-1}\mathbf{v}_{j} - (\gamma - 1)\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$\gamma V_{m+1}\underline{\mathbf{h}}_{j} - V_{m+1}(\gamma - 1)\underline{\mathbf{e}}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$V_{m+1}(\gamma \underline{\mathbf{h}}_{j} - (\gamma - 1)\underline{\mathbf{e}}_{j}) = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$

which yields:

$$\underline{\mathbf{H}}_{m}^{(\omega)} = (\underline{\mathbf{H}}_{m} - \underline{\mathbf{I}}_{m})\,\mathbf{\Gamma}_{m} + \underline{\mathbf{I}}_{m},$$

with $\Gamma_m := diag(\gamma_1, ..., \gamma_m)$.

Altogether,

$$(A - \omega I)\mathcal{P}(\omega)_{j}^{-1}\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$\gamma A\mathcal{P}_{j}^{-1}\mathbf{v}_{j} - (\gamma - 1)\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$\gamma V_{m+1}\underline{\mathbf{h}}_{j} - V_{m+1}(\gamma - 1)\underline{\mathbf{e}}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$V_{m+1}(\gamma \underline{\mathbf{h}}_{j} - (\gamma - 1)\underline{\mathbf{e}}_{j}) = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$

which yields:

$$\underline{\mathbf{H}}_{m}^{(\omega)} = (\underline{\mathbf{H}}_{m} - \underline{\mathbf{I}}_{m})\,\mathbf{\Gamma}_{m} + \underline{\mathbf{I}}_{m},$$

with $\Gamma_m := diag(\gamma_1, ..., \gamma_m)$.

Altogether,

$$(A - \omega I)\mathcal{P}(\omega)_{j}^{-1}\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$\gamma A\mathcal{P}_{j}^{-1}\mathbf{v}_{j} - (\gamma - 1)\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$\gamma V_{m+1}\underline{\mathbf{h}}_{j} - V_{m+1}(\gamma - 1)\underline{\mathbf{e}}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$V_{m+1}(\gamma \underline{\mathbf{h}}_{j} - (\gamma - 1)\underline{\mathbf{e}}_{j}) = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$

which yields:

$$\underline{\mathbf{H}}_{m}^{(\omega)} = (\underline{\mathbf{H}}_{m} - \underline{\mathbf{I}}_{m})\,\mathbf{\Gamma}_{m} + \underline{\mathbf{I}}_{m},$$

with $\Gamma_m := diag(\gamma_1, ..., \gamma_m)$.

Altogether,

$$(A - \omega I)\mathcal{P}(\omega)_{j}^{-1}\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$\gamma A\mathcal{P}_{j}^{-1}\mathbf{v}_{j} - (\gamma - 1)\mathbf{v}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$\gamma V_{m+1}\underline{\mathbf{h}}_{j} - V_{m+1}(\gamma - 1)\underline{\mathbf{e}}_{j} = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$
$$V_{m+1}(\gamma \underline{\mathbf{h}}_{j} - (\gamma - 1)\underline{\mathbf{e}}_{j}) = V_{m+1}\underline{\mathbf{h}}_{j}^{(\omega)}$$

which yields:

$$\underline{H}_{m}^{(\omega)} = (\underline{H}_{m} - \underline{I}_{m}) \Gamma_{m} + \underline{I}_{m},$$
with $\Gamma_{m} := diag(\gamma_{1}, ..., \gamma_{m}).$

(日) (同) (三) (三)

A first example - The setting

Test case from literature:

- $\Omega = [0,1] \times [0,1]$
- *h* = 0.01 implying
 n = 10.201 grid points
- system size:
 4n = 40.804
- N = 6 frequencies
- point source at center

Reference

• T. Airaksinen, A. Pennanen, and J. Toivanen, A damping preconditioner for time-harmonic wave equations in fluid and elastic material. Journal of Computational Physics, 2009.

· • @ • • Ξ • • Ξ •

A first example - Convergence behavior (1/2)

Preconditioned multi-shift GMRES:

< □ ▶

- simultaneous solve
- CPU time: 17.71s

· • @ • • = • • = •

TUDelft

A first example - Convergence behavior (2/2)

Preconditioned nested FOM-FGMRES:

We observe:

- 30 inner iterations
- $\bullet\,$ truncate when inner residual norm ~ 0.1
- very few outer iterations
- CPU time: 9.62s

A first example - More nested methods

We were running the same setting with different (nested) multi-shift Krylov methods:

	multi-shift Krylov methods					
	msGMRES	rest_msGMRES	QMRIDR(4)	msIDR(4)		
# inner iterations	-	20	-	-		
# outer iterations	103	7	136	134		
seed shift τ	0.7-0.7i	0.7-0.7i	0.7-0.7i	0.7-0.7i		
CPU time	17.71s	6.13s	22.35s	22.58s		
	nested multi-shift Krylov methods					
	FOM-FGMRES	IDR(4)-FGMRES	FOM-FQMRIDR(4)	IDR(4)-FQMRIDR(4)		
# inner iterations	30	25	30	30		
# outer iterations	7	9	5	15		
seed shift τ	0.7-0.7i	0.7-0.7i	0.7-0.7i	0.7-0.7i		
CPU time	9.62s	32.99s	8.14s	58.36s		

Summary

- ✓ Nested Krylov methods for Ax = b are widely used → extension to shifted linear systems is possible
- Multiple combinations of inner-outer methods possible, e.g. FOM-FGMRES, IDR-FQMRIDR, ...
- The shift-and-invert preconditioner (or the polynomial preconditioner) can be applied on top
- X Future work: recylcing, deflation, ...

M. Baumann

▲ 同 ▶ ▲ ヨ ▶ ▲ ヨ ▶

Thank you for your attention!

Further reading:

M. Baumann and M. B. van Gijzen. *Nested Krylov methods for shifted linear systems.* DIAM technical report 14-01, 2014.

Further coding:

https://bitbucket.org/ManuelMBaumann/nestedkrylov

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

IDR(s) in a nutshell

 $\mathsf{IDR}(s)$ is a Krylov subspace method that enforces the residuals \mathbf{r}_n to be,

$$\mathcal{G}_{j+1}
i \mathbf{r}_{n+1} = (I - \mu_{j+1}A)\mathbf{v}_n, \quad ext{with } \mathbf{v}_n \in \mathcal{G}_j \cap \mathcal{P}^{\perp},$$

where $\mu_{j+1} \in \mathbb{C} \setminus \{0\}$ and $\mathcal{P} = [\mathbf{p}_1, ..., \mathbf{p}_s]$ are chosen freely.

The IDR theorem states:

Reference

• P. Sonneveld, M. B. van Gijzen, *IDR(s): A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations.* SIAM J. Sci. Comput., 2008.

IDR(s) in a nutshell

 $\mathsf{IDR}(s)$ is a Krylov subspace method that enforces the residuals \mathbf{r}_n to be,

$$\mathcal{G}_{j+1}
i \mathbf{r}_{n+1} = (I - \mu_{j+1}A)\mathbf{v}_n, \quad ext{with } \mathbf{v}_n \in \mathcal{G}_j \cap \mathcal{P}^{\perp},$$

where $\mu_{j+1} \in \mathbb{C} \setminus \{0\}$ and $\mathcal{P} = [\mathbf{p}_1, ..., \mathbf{p}_s]$ are chosen freely.

The IDR theorem states:

•
$$\mathcal{G}_{j+1} \subset \mathcal{G}_j$$
 for all $j \ge 0$,
• $\mathcal{G}_j = \{\mathbf{0}\}$ for some $j \le N$.

Reference

• P. Sonneveld, M. B. van Gijzen, *IDR(s): A family of simple and fast algorithms for solving large nonsymmetric systems of linear equations.* SIAM J. Sci. Comput., 2008.

TUDelft

IDR(s) with collinear residuals

Notation: Let's call $\widehat{A} \equiv (A - \omega I)$ and $\widehat{\mathbf{r}}_n, \widehat{\mu}_{j+1}, \widehat{\mathbf{v}}_n, ...$

Assuming, we have $\hat{\mathbf{v}}_n = \alpha_n \mathbf{v}_n$ (not trivial!), then we want:

$$\gamma_{n+1}\mathbf{r}_{n+1} = \hat{\mathbf{r}}_{n+1}$$

$$\gamma_{n+1} \left(I - \mu_{j+1}A\right) \mathbf{v}_n = \left(I - \hat{\mu}_{j+1}\widehat{A}\right) \hat{\mathbf{v}}_n$$

$$\gamma_{n+1} \left(I - \mu_{j+1}A\right) \mathbf{v}_n = \left(I - \hat{\mu}_{j+1}(A - \omega I)\right) \alpha_n \mathbf{v}_n$$

$$\gamma_{n+1}\mathbf{v}_n - \gamma_{n+1}\mu_{j+1}A\mathbf{v}_n = \left(\alpha_n + \alpha_n\hat{\mu}_{j+1}\omega\right)\mathbf{v}_n - \alpha_n\hat{\mu}_{j+1}A\mathbf{v}_n$$

Choose $\hat{\mu}_{j+1}$ and γ_{n+1} such that the two terms match:

$$\hat{\mu}_{j+1} = \frac{\mu_{j+1}}{1 - \omega \mu_{j+1}}, \quad \gamma_{n+1} = \frac{\alpha_n}{1 - \omega \mu_{j+1}}$$

M. Baumann

IDR(s) with collinear residuals

Notation: Let's call $\widehat{A} \equiv (A - \omega I)$ and $\widehat{\mathbf{r}}_n, \widehat{\mu}_{j+1}, \widehat{\mathbf{v}}_n, ...$

Assuming, we have $\hat{\mathbf{v}}_n = \alpha_n \mathbf{v}_n$ (not trivial!), then we want:

$$\gamma_{n+1}\mathbf{r}_{n+1} = \hat{\mathbf{r}}_{n+1}$$

$$\gamma_{n+1} (I - \mu_{j+1}A) \mathbf{v}_n = (I - \hat{\mu}_{j+1}\widehat{A}) \hat{\mathbf{v}}_n$$

$$\gamma_{n+1} (I - \mu_{j+1}A) \mathbf{v}_n = (I - \hat{\mu}_{j+1}(A - \omega I)) \alpha_n \mathbf{v}_n$$

$$\gamma_{n+1}\mathbf{v}_n - \gamma_{n+1}\mu_{j+1}A\mathbf{v}_n = (\alpha_n + \alpha_n\hat{\mu}_{j+1}\omega)\mathbf{v}_n - \alpha_n\hat{\mu}_{j+1}A\mathbf{v}_n$$

Choose $\hat{\mu}_{j+1}$ and γ_{n+1} such that the two terms match:

$$\hat{\mu}_{j+1} = \frac{\mu_{j+1}}{1 - \omega \mu_{j+1}}, \quad \gamma_{n+1} = \frac{\alpha_n}{1 - \omega \mu_{j+1}},$$

M. Baumann