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A Fast Iterative Solution of the Time-harmonic
Wave Equation with MSSS-preconditioned IDR(s)
M. Baumann* (Delft University of Technology) & M.B. Van Gijzen (Delft
University of Technology)

SUMMARY
For the Full Waveform Inversion in frequency-domain, the fast numerical solution of the time-harmonic
wave equation is required. For large three-dimensional problems, the problem size exceeds several million
of unknowns, and a short-recurrence Krylov method such as IDR(s) is used to solve linear systems of this
size. Especially for high-frequency simulations, an efficient preconditioner needs to be applied in order to
speed-up convergence.

In our presentation, we introduce a new preconditioner for the time-harmonic wave equation that exploits
the hierarchical structure of the discretized problem. We use multilevel sequentially semiseparable (MSSS)
matrix computations for the approximate inversion of the preconditioner. For large three-dimensional
problems, we present a memory-efficient modification of the MSSS preconditioner that resembles the
approximate solution of a sequence of two-dimensional problems. We conclude our presentation with
numerical examples for the time-harmonic wave equation in both acoustic and elastic media, and in two
and three spatial dimensions.
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 Introduction

The frequency-domain formulation of wave propagation has shown specific modeling advantages for
both acoustic and elastic media. For the efficient Full Waveform Inversion, notably the waveform to-
mography (Virieux and Operto (2009), Plessix and Pérez Solano (2015)), a fast numerical solution of
the respective forward problem is required. A finite element discretization of the acoustic or the elastic
wave equation yields the following mathematical problem,

(K + iωkC−ω
2
k M)xk = b, k = 1, ...,Nω , (1)

where K,M are the stiffness and mass matrix, respectively, and C incorporates Sommerfeld boundary
conditions. Note that we aim to solve (1) at multiple (angular) frequencies {ω1, ...,ωNω

} simultaneously.
The unknown vector xk consists of the Fourier-transformed displacement vector in the case of the elastic
wave equation, and the pressure in the acoustic case. The right-hand side b usually models a point
source.

The preconditioned Induced Dimension Reduction (IDR(s)) method

For large 3D problems, the leading dimension of K,C,M exceeds several million, and short-recurrence
Krylov methods are typically used to solve linear systems of that size. In our application, we use the
Induced Dimension Reduction (IDR(s)) method which was introduced by Sonneveld and Van Gijzen
(2008) for the iterative solution of linear systems of the form Ax = b. IDR(s) has shown to outperform
other short-recurrence Krylov methods such as Bi-CGSTAB (introduced by Van der Vorst (1992)) in
several examples.
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Figure 1 A spy plot of P(τ) for a small 3D elastic problem. Appropriate zooming demonstrates the
hierarchically repeating structure of the matrix when lexicographical numbering is used.

As a preconditioner for (1), we use

P(τ) := K + iτC− τ
2M, τ ∈ [ωmin,ωmax], (2)

with seed frequency τ . This preconditioner has already been used by Baumann and Van Gijzen (2015)
where (1) is treated as a sequence of shifted linear systems. The spy plot of P(τ) in Figure 1 shows the
hierarchical structure of the preconditioner when a Cartesian grid is used. This gives rise to the usage of
multilevel sequentially semiseparable (MSSS) preconditioning technique for the efficient (approximate)
inversion of P(τ). In Qiu et al. (2015), the authors show that an approximate Schur decomposition
P(τ) = LSU , with S being block-diagonal, and L,U being block bidiagonal matrices of lower and
upper tridiagonal form, can be computed in linear complexity, and the usage as a preconditioner yields
good results in the case of a 3D Laplace optimal control problem.

Example 1: The elastic marmousi-2 problem

In our numerical examples, we restrict ourselves to the single-frequency case where Nω = 1, and τ = ω1.
We illustrate the performance of the preconditioner (2) using MSSS matrix computations by means of
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 two examples. As a two-dimensional test case, we consider the elastic marmousi-2 problem sug-
gested in Martin et al. (2002). The computational domain and the numerical solution at two different
frequencies are shown in Figure 2.
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Figure 2 Speed of S-waves (top), and real part of the z-component of the displacement vector in
frequency-domain at f = 2 Hz (middle) and f = 4 Hz (bottom) for the marmousi-2 model, cf. Martin
et al. (2002) for a complete parameter set.

We perform numerical tests on the marmousi-2 problem at different grid sizes h in order to illustrate
the performance of the preconditioner (2) when MSSS matrix computations are used. We note that in
the single-frequency case, the preconditioner has the same form as the original problem. In order to
apply MSSS matrix operations in linear computational complexity, it is required to limit the rank of off-
diagonal blocks using model order reduction techniques, cf. Qiu et al. (2015). In Table 1 we show that
an inexact application of the MSSS preconditioner leads to a convergence of the outer Krylov method
within very few iterations. Moreover, we see in the third column of Table 1 that the MSSS operations
grow linearly with the number of degrees of freedom (dofs) when the discretization size is divided by
two.

Table 1 Numerical experiments for the marmousi-2 problem at f = 4 Hz with residual tolerance 10−9

and off-diagonal rank truncated at rmax = 10.
h # dofs MSSS decomposition IDR(s = 4) Bi-CGSTAB

40m 64,752 3.64 sec 0.45 sec ( 9 iter.) 0.40 sec ( 8 iter.)
20m 257,002 23.12 sec 3.01 sec (10 iter.) 3.25 sec (11 iter.)
10m 1,024,002 89.94 sec 17.04 sec (15 iter.) 17.84 sec (16 iter.)

In a second experiment we simultaneously increase problem size and wave frequency. The results in Ta-
ble 2 show that the number of Krylov iterations can be controlled at a constant level when the maximum
off-diagonal rank rmax of the MSSS computations is slightly increased. By comparing both experiments
we note that the time for the MSSS decomposition does not differ a lot when different off-diagonal ranks
are chosen.
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 Table 2 Numerical experiments for the marmousi-2 problem when the frequency is increased.
f h rmax MSSS decomposition IDR(s = 4) Bi-CGSTAB

1 Hz 40m 3 2.44 sec 1.94 sec (41 iter.) 2.14 sec (43 iter.)
2 Hz 20m 5 19.63 sec 10.91 sec (38 iter.) 12.43 sec (44 iter.)
4 Hz 10m 8 82.04 sec 40.72 sec (37 iter.) 44.32 sec (41 iter.)

Example 2: A three-dimensional acoustic wedge problem

As a second example, we consider an extension of the acoustic wedge problem presented in Plessix
and Mulder (2004) to a three-dimensional domain Ω = [0,600m]× [0,600m]× [0,1000m]. The domain
models three layers of different physical properties with parameter c(x,y,z) = {2000,1500,3000}m/s,
as shown in Figure 3.

Figure 3 Underlying sound velocity profile (left) and numerical solution at f = 32 Hz (right) for the
three-dimensional acoustic wedge problem using a grid size of h = 5m.

The application of the MSSS preconditioner in 3D differs from the two-dimensional case: In order
to design a memory-efficient MSSS algorithm, we simplify the block LSU decomposition of (2) such
that the Schur complements that appear in the matrix S only consist of diagonal blocks of the original
preconditioner P(τ). This approach limits the increase in rank of the MSSS structure, and can be
interpreted as solving the 3D case as a sequence of two-dimensional problems.

Table 3 Numerical experiments for the 3D wedge problem at f = 4 Hz with residual tolerance 10−9.
h # dofs MSSS decomposition IDR(s = 4) Bi-CGSTAB

20m 49,011 0.77 sec 4.69 sec ( 73 iter.) 7.92 sec (122 iter.)
10m 375,821 6.70 sec 79.20 sec (139 iter.) 156.51 sec (273 iter.)
5m 2,942,841 57.24 sec 1511.91 sec (287 iter.) 3198.13 sec (614 iter.)

We present numerical experiments for the three-dimensional wedge problem in Table 3. Clearly, we
see that the MSSS decomposition scales linearly with the problem size and that the previously described
simplifications lead to a worse preconditioner in terms of number of Krylov iterations. By comparing
the last two columns we note that IDR(4) outperforms Bi-CGSTAB by a factor of ∼ 2 when the same
MSSS preconditioner is used. IDR(s) requires the storage of 3s+ 4 vectors compared to 7 vectors in
Bi-CGSTAB which is small for the default value s = 4, cf. Sonneveld and Van Gijzen (2008).
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 Extension to multiple frequencies and multiple right-hand sides

In order to deal with multiple frequencies (and multiple right-hand sides), we suggest to re-formulate
problem (1) to,

A (X)≡ KX+ iCXΣ−MXΣ
2 = B, (3)

where Σ := diag(ω1, ...,ωNω
), and with a block right-hand side B := [b, ...,b] that allows to include

multiple sources. The unknown in (3) is the matrix of all solutions to (1), X = [x1, ...,xNω
], and a short-

hand notation of the matrix equation (3) is, thus, given by A (X) = B. Most recently, Astudillo and
Van Gijzen (2015) extended IDR(s) to solve linear matrix equations.

Conclusions and future work

We demonstrate the performance of IDR(s) with an MSSS preconditioner for time-harmonic wave prob-
lems in acoustic and elastic media. First numerical experiments have shown that problems in two and
three spatial dimensions of the order of million unknowns can be solved efficiently, and linear com-
putational complexity is observed for the MSSS matrix operations. The dependence of the suggested
preconditioner (2) on the considered frequency will be elaborated in future work. This is of particular
importance when multiple frequencies in the sense of (3) are solved simultaneously.

For a more detailed description of the IDR(s) algorithm preconditioned with an MSSS preconditioner,
we refer to our recent technical report Astudillo et al. (2016).
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