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Abstract

The purpose of this report is to present some clarifying remarks together with
proofs of some relevant theorems that were not dealt with in the presentation but that
were studied for a deeper understanding of the balanced truncation method. In this
scheme, the states which require a large amount of energy and/or yield small amounts
of observation energy are eliminated. This process requires a phase of balancing,
after which the observability and controllability Gramians are diagonal and identical.
Thereby, states that are hard to reach as well as states that are hard to observe are
easily identified. Following is a phase of truncation, in which states satisfying both
properties are eliminated. An error bound for the truncated system can be derived.
It is found that the reduction preserves the stability of the system.

In Section 1, we identify the suitable states for the reduction of the model in terms
of a relation of the controllability and observability Gramians. In Section 2, we present
a reduction of the system which eliminates the uncontrollable and unobservable states
without the introduction of an error. In Section 3 we give a detailed proof of the
preservation of stability of the reduced system. The section consists of a detailed
work-out of the proof of Theorem 7.7 found in [Ant05].

Keywords: Model order reduction, Balanced truncation, controllability and observabil-
ity Gramians, Hankel singular values.

1 Characterization of suitable states for elimination

In this section, we show two relations that are used in the balanced truncation algorithm
in order to identify those states that are hard to reach and those which are hard to observe.
In our presentation we point out that because both relations only depend respectively on
the controllability and observability Gramians, they can be used to eliminate those states
that are at the same time hard to reach and hard to observe.

Theorem: Let A ∈ Rn,n, tf > 0, and xf ∈ Rn be a reachable state of the system
ẋ = Ax(t) +Bu(t) with controllability Gramian

P (tf ) :=

∫ tf

0
eAtBBT eA

T tdt. (1)
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Let u(·) ∈ L2 ([0, tf ],Rm) with

û(t) = BT eA
T (tf−t)P−1(tf )xf . (2)

Then the following holds true

(a) ‖û‖2 = xTf P (tf )−1xf .

(b) For all u(·) ∈ L2 ([0, tf ],Rm) which control the system from x(0) = x0 to x(tf ) = xf ,
there holds ‖û‖L2 ≤ ‖u‖L2 .

Proof. (a) Let Btf : L2 ([0, tf ],Rm)→ Rn be the reachability map of ẋ = Ax(t) + Bu(t),
given by:

Btf : u(·) 7→ x(tf ) =

∫ tf

0
eA(tf−τ)Bu(τ)dτ. (3)

Then,

û(t) = B∗tfP (tf )−1xf ,

with the adjoint B∗tf derived in Appendix A.
It follows:

‖û‖2 =
〈
B∗tfP (tf )−1xf ,B∗tfP (tf )−1xf

〉
L2

=
〈
P (tf )−1xf ,BtfB∗tfP (tf )−1xf

〉
Rn

=
〈
P (tf )−1xf , P (tf )P (tf )−1xf

〉
Rn

=
〈
P (tf )−1xf , xf

〉
Rn = xTf P (tf )−1xf

(b) In order to show that û defined in (2) is the optimal input that drives the system
from x0 = 0 to x(tf ) = xtf , we consider

u(·) := û(·) + v(·) ∈ Btf , since we require v(·) ∈ kerBtf .

Then

‖u‖2L2
= ‖û+ v‖2L2

= ‖û‖2L2
+ 2〈û, v〉L2 + ‖v‖2L2

= ‖û‖2L2
+ 2

〈
B∗tfP (tf )−1xf , v

〉
L2

+ ‖v‖2L2

= ‖û‖2L2
+ 2

〈
P (tf )−1xf ,Btf v︸︷︷︸

=0

〉
L2

+ ‖v‖2L2

= ‖û‖2L2
+ ‖v̂‖2L2

≥ ‖û‖2L2

Theorem: Consider the zero-input system ẋ(t) = Ax(t), x(0) = x0, y(t) = Cx(t) for
tf > 0, x0 ∈ Rn with the observability Gramian

Q(tf ) =

∫ tf

0
eA

T tCTCeAt dt. (4)

Then it holds

xT0 Q(tf )x0 = ‖y(·)‖2L2
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Proof.

xT0 Q(tf )x0 =

∫ tf

0
xT0 e

AT tCTCeAtx0 dt =

∫ tf

0
‖CeAtx0‖2 dt = ‖y(·)‖2L2

2 Errorless model order reduction

Now, we present that uncontrollable and unobservable states can be eliminated without
any error. In our presentation, we have shown that there exists a transformation S, such
that (A,B,C,D) is equivalent to (S−1AS, S−1B,CS,D), where

S−1AS =


A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

 , S−1B =


B1

B2

0
0

 , CS =
[
C1 0 C3 0

]

In particular, [A11, B1, C1, D] is both controllable and observable. Determining the trans-
fer function we obtain:

G(s) = C(sI −A)−1B +D

=
[
C1 0 C3 0

] 
sI −A11 0 −A13 0
−A21 sI −A22 −A23 −A24

0 0 sI −A33 0
0 0 −A43 sI −A44


−1 

B1

B2

0
0

+D

=
[
C1 0 C3 0

]  [ sI −A11 0
−A13 sI −A22

]−1

?

0 ?



B1

B2

0
0

+D

=
[
C1 0

] [ sI −A11 0
−A13 sI −A22

]−1 [
B1

B2

]
+D

=
[
C1 0

] [ (sI −A11)−1 0
? ?

] [
B1

B2

]
+D

= C1(sI −A11)−1B1 +D.

Hence, the elimination of uncontrollable and unobservable states preserves the transfer
function. It can therefore be considered as errorless model order reduction.

3 Preservation of stability

In our presentation, the following theorem which guarantees that stability is preserved by
balanced truncation has been presented.

Theorem: Given a stable full order system (A,B,C,D), then the reduced system
(Ã, B̃, C̃, D̃) obtained by balanced truncation has the following properties:
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(a) Ã has no eigenvalues in the open right half plane, i.e. the reduced system is stable.

(b) If, additionally, σi 6= σj , for i = 1, ..., r, j = r + 1, ..., n, then Ã has no eigenvalues
on iR, i.e. the reduced system is asymptotically stable.

Proof. (a) In [Ant05], Lemma 6.15 it is proved that for AP +PA∗ = Q, with Q ≥ 0 the
following holds true

If P has no eigenvalues on i · R, then π(A) ≤ π(P ),

where π(·) denotes the number of eigenvalues in the open right half plane of the considered
matrix.

By the balanced truncation algorithm, the following Lyapunov equation holds

ÃΣ̃ + Σ̃Ã∗ = −B̃B̃∗

⇔ Ã(−Σ̃) + (−Σ̃)Ã∗ = B̃B̃∗,

with B̃B̃∗ ≥ 0. Since Σ̃ is positive definite, we conclude−Σ̃ is negative definite. Therefore,
no eigenvalue of −Σ̃ lies in the open right half plane and by Lemma 6.15, the same holds
for the eigenvalues of Ã.

(b) Let P = Q =

[
Σ̃

Σ22

]
be the Gramians of the full order system after balancing,

i.e. Σ̃ and Σ22 are diagonal and Σ̃ is the Gramian of the reduced system. We have to
show that if Σ̃ and Σ22 have no diagonal elements in common, then Ã has no eigenvalues
on the imaginary axis.

Let us assume the contrary, i.e. let Ã have eigenvalues on the imaginary axis. Let us
further assume that λ = iω is the only eigenvalue on the imaginary axis and σ1 = 1 is
the largest Hankel singular value with multiplicity equal to 1. Let v be the corresponding
eigenvector,

Ãv = λv.

Then, it follows

v∗Ã∗ = λ∗v∗ = −λv∗.

Consider the Lyapunov equation

Ã∗Σ̃ + Σ̃Ã+ C̃∗C̃ = 0 (5)

and multiply (5) from the left with v∗ and from the right with v:

v∗Ã∗Σ̃v + v∗Σ̃Ãv + v∗C̃∗C̃v = 0

−λv∗Σ̃v + λv∗Σ̃v + ‖C̃v‖ = 0

⇒ C̃v = 0

Multiplying (5) only from the right with v and using C̃v = 0,we derive

Ã∗Σ̃v + Σ̃Ãv + C̃∗C̃v = 0

Ã∗Σ̃v + Σ̃Ãv = 0

(Ã∗ + λI)Σ̃v = 0
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Consider the Lyapunov equation

ÃΣ̃ + Σ̃Ã∗ + B̃B̃∗ = 0, (6)

together with (Ã∗ + λI)Σ̃v = 0. Then, a left multiplication of (6) with v∗Σ̃ and a right
multiplication with Σ̃v leads to:

v∗Σ̃Ã︸ ︷︷ ︸
−λṽ∗Σ

Σ̃Σ̃v + v∗Σ̃Σ̃ Ã∗Σ̃v︸ ︷︷ ︸
λΣ̃v

+v∗Σ̃B̃B̃∗Σ̃v = 0 ⇒ B̃∗Σ̃v = 0.

Furthermore, right multiplication of (6) with Σ̃v leads to:

(Ã− λI)Σ̃2v = 0. (7)

Since (7) is an eigenequation of the eigenvalue λ, we conclude that Σ2v is a multiple of v,
i.e.

Σ2v = αv,

for some real α. Since this is another eigenequation, now for the pair (v, α), we can con-
clude due to the special structure of the matrix Σ̃2 that v can be taken as v = [1, 0, ..., 0]T .

Next, we consider the full-order Lyapunov equation[
Ã A12

A21 A22

] [
Σ̃

Σ22

]
+

[
Σ̃

Σ22

] [
Ã∗ A∗21

A∗12 A∗22

]
+

[
B1

B2

] [
B∗1 B∗2

]
=

[
0 0
0 0

]
and obtain the next equation from the (1, 2) position:

A21Σ̃ + Σ22A
∗
12 +B2B

∗
1 = 0. (8)

Similary, we derive

Σ22A21 +A∗12Σ̃ + C∗2C1 = 0. (9)

Let us denote the first column of A21, A
∗
12 by a, b, respectively. Multiplying (8)-(9)

from the right by v = [1, 0, ..., 0]T , we obtain

a+ Σ22b = 0, Σ22a+ b = 0. (10)

Since, by assumption, Σ̃ and Σ22 don’t have common diagonal entries, the following can
be deduced from (10){

Σ−1
22 a+ b = 0

Σ22a+ b = 0

}
⇒ (Σ−1

22 − Σ22)a = 0 ⇒ a = 0,

where the last implication holds true because there are no ones on the diagonal of Σ22

and, hence, also Σ−1
22 . Therefore, the matrix (Σ−1

22 − Σ22) has full rank.
As a consequence, we have derived that [v∗, 0]∗ ∈ Rn is an eigenvector of the whole

matrix A corresponding to the eigenvalue λ = iω. This is, however, a contradiction to the
reachability of (A,B). Therefore, Ã can not have eigenvalues on the imaginary axis.
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4 Concluding remarks on the project work

This report contains complementary information to the presentation on Model order re-
duction by balanced truncation for the mastermath course in Systems and Control. It
consists of a set of theorems, proofs and concepts, which, for pedagogic reasons, were
not presented in detail in the presentation but had much importance in the preparatory
work. The idea of approximating the transfer functions in the H∞-norm comes from the
breakthrough paper by Glover, [Glo84]. The study of the characterization of suitable
states for model order reduction as well as the errorless reduction of uncontrollable and
unobservable states was adapted from [Rei12]. The proof presented in the Section 4 on the
preserving of stability is a detailed expansion and explanation of that found in [Ant05].
Many asseverations were used without a proof and were used as background knowledge
found on [PW98]. The balanced truncation algorithm was tested with a numerical exam-
ple, inspired by [Rei12].
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A The adjoint of Btf
Consider the reachability map

Btf : L2([0, tf ],Rm)→ Rn

u(·) 7→ x(tf ) =

∫ tf

0
eA(tf−τ)Bu(τ) dτ)

Then, the corresponding adjoint operator maps from Rn to L2([0, tf ],Rm) and is given by

B∗tf : Rn → L2([0, tf ],Rm)

x 7→ BT eA
T (tf−·)x(·)

Proof.

〈
x,Btfu(·)

〉
Rn = xT

∫ tf

0
eA(tf−τ)Bu(τ)dτ

=

∫ tf

0
xT eA(tf−τ)Bu(τ)dτ

=

∫ tf

0
(BT eA

T (tf−τ)x)Tu(τ)dτ

=
〈
BT eA

T (tf−·)x, u(·)
〉
L2

Note, that the following relation holds true:

BtfB
∗
tf
x =

∫ tf

0
eA(tf−τ)B(B∗tfx)(τ) dτ

=

∫ tf

0
eA(tf−τ)B(BT eA

T (tf−τ)x) dτ

=

∫ tf

0
eA(tf−τ)BBT eA

T (tf−τ) dτ x

=

∫ tf

0
eAτBBT eA

T τ dτ x = P (tf )x,

where P (tf ) is the controllability Gramian defined by (1).
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