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Nonlinear dynamical systems

Consider the nonlinear dynamical system

ẏ(t) = Ay(t) + F(t, y(t)), y(t) ∈ RN

y(0) = y0
(1)

arises in many applications, e.g. mechanical systems, �uid
dynamics, neuron modeling, ...

the matrix A represents the linear dynamical behavior and the
function F represents nonlinear dynamics

often large dimension of (1) leads to huge computational work
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The idea of model order reduction

Approximate the state via

y(t) ≈ U`ỹ(t), U` ∈ RN×`, ỹ ∈ R`,

where the matrix U` has orthonormal columns,
the so-called principal components of y, and
`� N.

Galerkin projection of the original full-order system leads to a
reduced system of ` equations:

UT
`

[
U` ˙̃y − AU`ỹ − F(t,U`ỹ)

]
= 0

⇒ ˙̃y = UT
` AU`︸ ︷︷ ︸
=:Ã

ỹ + UT
` F(t,U`ỹ)
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]
= 0

⇒ ˙̃y = UT
` AU`︸ ︷︷ ︸
=:Ã
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3 / 34



Introduction POD-DEIM algorithm Optimal Control Burgers' equation Outlook Literature

Two questions are left...

Considering the reduced model

˙̃y(t) = Ãỹ(t) + UT
` F(t,U`ỹ(t)), ỹ(t) ∈ R`

two questions are left:

1 How to obtain the matrix U` of principal components ?

2 Note that U`ỹ(t) ∈ RN is still large. How do we evaluate
F(t,U`ỹ(t)) e�ciently ?
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2 Note that U`ỹ(t) ∈ RN is still large. How do we evaluate
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Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition (POD)

During the numerical simulation, build up the snapshot matrix

Y := [y(t1), ..., y(tns )] ∈ RN×ns ,

with ns being the number of snapshots.

Perform a Singular Value Decomposition (SVD)

Y = UΣV T

and let U` := U(:,1:l) consist of those left singular vectors of Y
that correspond to the ` largest singular values in Σ.
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Discrete Empirical Interpolation Method (DEIM)

The Discrete Empirical Interpolation Method (DEIM)

Consider the nonlinearity

N := UT
`︸︷︷︸

`×N

F(t,U`ỹ(t))︸ ︷︷ ︸
N×1

The approximation

F ≈W c, W ∈ RN×m, c ∈ Rm

is over-determined. Therefore, �nd projector P such that:

PTF = (PTW )c ⇒ F ≈W c = W (PTW )−1PTF
⇒ N ≈ UT

` W (PTW )︸ ︷︷ ︸
m×m

−1PTF(t,U`~y(t))
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Discrete Empirical Interpolation Method (DEIM)

Algorithm 1 The DEIM algorithm [Chaturantabut, Sorensen, 2010]

1: INPUT: {wi}mi=1 ⊂ RN linear independent
2: OUTPUT: ~℘ = [℘1, ..., ℘m]T ∈ Rm, P ∈ RN×m

3: [|ρ|, ℘1] = max{|w1|}
4: W = [w1],P = [e℘1 ], ~℘ = [℘1]
5: for i = 2 to m do

6: Solve (PTW )c = PTwi for c
7: r = wi −W c

8: [|ρ|, ℘i ] = max{|r|}

9: W ← [W wi ],P ← [P e℘i ], ~℘←
[
~℘
℘i

]
10: end for
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Discrete Empirical Interpolation Method (DEIM)

The product PTF is a selection of entries

Let m = 3. Suppose the DEIM-algorithm has chosen indices
℘1, ..., ℘m such that:

Assuming that F(·) acts pointwise, we obtain:

N ≈ UT
` W (PTW )−1PTF(t,U`~y(t))

= UT
` W (PTW )−1︸ ︷︷ ︸

`×m

F(t,PTU`~y(t))︸ ︷︷ ︸
m×1
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Application: MOR for Burgers' equation

The nonlinear 1D Burgers' model

yt +

(
1

2
y2 − νyx

)
x = f , (x , t) ∈ (0, L)× (0,T ),

y(t, 0) = y(t, L) = 0, t ∈ (0,T ),

y(0, x) = y0(x), x ∈ (0, L).

1 FEM-discretization in space leads to:

M ẏ(t) = −1
2
By2(t)− νCy(t) + f, t > 0

y(0) = y0

2 Time integration via implicit Euler + Newton's method
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Application: MOR for Burgers' equation

POD-DEIM for Burgers' equation

Suppose, Φ` is an M-orthogonal POD basis.

The POD reduced Burgers' equation

=I`︷ ︸︸ ︷
ΦT

` MΦ` ~̇y(t) = −
1

2
ΦT

` B(Φ`~y(t))2 − νΦT

` CΦ`~y(t)

⇒ ~̇y(t) = −
1

2
B`(Φ`~y(t))2 − νC`~y(t)

Next, obtain W via a truncated SVD of [y2(t1), ..., y2(tns )] and apply DEIM to the

columns of W .

The POD-DEIM reduced Burgers' equation

~̇y(t) = −
1

2
B̃(F̃~y(t))2 − νC̃~y(t),

with B̃ = ΦT

` BW (PTW )−1 ∈ R`×m, F̃ = PTΦ` ∈ Rm×`, and C̃ = C` ∈ R`×`.
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Application: MOR for Burgers' equation
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Application: MOR for Burgers' equation
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Application: MOR for Burgers' equation
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Application: MOR for Burgers' equation
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Application: MOR for Burgers' equation
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Application: MOR for Burgers' equation

Computational Speedup [1]

Conclusion: High accuracy of the POD-DEIM reduced model.

But is it also faster?
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Spatial discretization of the full model depends on viscosity
parameter ν

choose `,m such that relative L2-error in O(10−4)
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Application: MOR for Burgers' equation

Computational Speedup [2]

For a �xed ν = 0.01, we could show the independence of the
POD-DEIM reduced model of the full-order dimension N.
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Computation time for solving the POD-DEIM reduced
Burgers' equation is almost constant (right)

POD-DEIM almost 4 times faster than pure POD (left)
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PDE-constrained optimization

Minimize

min
u
J (y(u), u),

where y is the solution to a nonlinear, possibly time-dependent
partial di�erential equation,

c(y , u) = 0.

J is called objective function,

in order to evaluate J , we need to solve c(y , u) = 0 for y(u),

solve with algorithms for unconstrained minimization problems.
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Second-order optimization algorithm

A Newton-type optimization algorithm

Minimize J (y(u), u) in u using information of the �rst and second
derivative.
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Second-order optimization algorithm

Gradient computation via adjoints

Consider the Lagrangian function

L(y , u, λ) = J (y , u) + λT c(y , u)

and impose the zero-gradient condition ∇yL(y , u, λ) = 0.

We derive the adjoint equation:

cy (y(u), u)Tλ = −∇yJ (y(u), u)

Algorithm 2 Computing ∇Ĵ (u) via adjoints [Heinkenschloss, 2008]

1: For a given control u, solve c(y , u) = 0 for the state y(u)
2: Solve the adjoint equation cy (y(u), u)Tλ = −∇yJ (y(u), u) for λ(u)

3: Compute ∇Ĵ (u) = ∇uJ (y(u), u) + cu(y(u), u)Tλ(u)
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3: Compute ∇Ĵ (u) = ∇uJ (y(u), u) + cu(y(u), u)Tλ(u)

21 / 34



Introduction POD-DEIM algorithm Optimal Control Burgers' equation Outlook Literature

First-order methods: BFGS and SPG

First-order optimization algorithms

Instead of solving

∇2J (yk , uk)sk = −∇J (yk , uk),

�rst-order methods approximate the Hessian via Hk and solve

Hksk = −∇J (yk , uk).

We have used Matlab implementations of the BFGS and the
SPG method,

Evaluation of J and gradient computation as seen before,

SPG easily allows to include bounds on the control, i.e.
ulower ≤ u(t, x) ≤ uupper which is used in many applications
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Optimal Control problem for Burgers' equation

Minimize

min
u

1

2

∫ T

0

∫ L

0

[y(t, x)− z(t, x)]2 + ωu2(t, x) dx dt,

where y is a solution to the nonlinear Burgers' equation

yt +

(
1

2
y2 − νyx

)
x

= f + u, (x , t) ∈ (0, L)× (0,T ),

y(t, 0) = y(t, L) = 0, t ∈ (0,T ),

y(0, x) = y0(x), x ∈ (0, L).

u is the control that determines y

z is the desired state
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Control goal

We want to control the solution of Burgers' equation in such a way
that it stays in the desired state z(t, ·) = y0,∀t:
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Figure: Uncontrolled (u ≡ 0) and desired state for ν = 0.01.
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Numerical treatment

1 Discretize the objective function and Burgers' equation in time
and space

2 Apply adjoints in order to compute gradient and Hessian

3 Apply �rst-order or second-order optimization algorithm

4 Explore the usage of a POD-DEIM reduced model
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Numerical tests

Newton-type method for the full-order Burgers' model:
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The corresponding optimal control at each iteration:
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We propose the following algorithm for POD-DEIM reduced
optimal control :
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Final state and control of the POD-DEIM reduced optimal control
problem:
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Computational Speedup [3]

Reduced optimal control using the Newton-type method:
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comparable value of the objective function at convergence

use same stopping criteria for full-order and reduced model
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Computational Speedup [4]

Some other results.

For ν = 0.0001, low-dimensional control
leads to a speedup of ∼ 20 for all three
optimization methods.
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Concluding Remarks

What I learnt:

The accuracy of the reduced Burgers' model is of the same
order when POD is extended by DEIM.

Optimal Control of Burgers' equation using POD-DEIM leads
to a speedup of ∼ 100 for small ν.

For the reduced model, all derivatives need to be computed in
terms of the reduced variable. This can be quite hard in
practice.
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Future Research

What I still want to learn:

Use the POD basis Φ` also for dimension reduction of the
control, i.e.

u(t) ≈ Φ`~u(t) =
∑̀
i=1

ϕi ũi (t)

Extend Burgers' model to 2D/3D

More sophisticated choice of reduced dimensions ` and m
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This Master project was supervised by
Marielba Rojas and Martin van Gijzen.

Thank you for your attention!

Are there any questions or remarks?

https://github.com/ManuelMBaumann/MasterThesis
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Further information can be found in...

S. Chaturantabut and D. Sorensen
Nonlinear Model Reduction via Discrete Empirical Interpolation.
SIAM Journal of Scienti�c Computing, 2010.

M. Heinkenschloss
Numerical solution of implicitly constrained optimization problems.
Technical report, Department of Computational and Applied
Mathematics, Rice University, 2008.

K. Kunisch and S. Volkwein
Control of the Burgers Equation by a Reduced-Order Approach

Using Proper Orthogonal Decomposition.
Journal of Optimization Theory and Applications, 1999.
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