Introduction	POD-DEIM algorithm	Optimal Control	Burgers' equation	Outlook	Literature
	0000000000000		00000000		

Nonlinear Model Order Reduction using POD/DEIM for Optimal Control of Burgers' Equation

Manuel M. Baumann

July 15, 2013

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook 00	Literature
Outline					

- 1 What is Model Order Reduction (MOR)?
- 2 Model Order Reduction using POD-DEIM
 - Proper Orthogonal Decomposition (POD)
 - Discrete Empirical Interpolation Method (DEIM)
 - Application: MOR for Burgers' equation
- 3 PDE-constrained Optimization
 - Second-order optimization algorithm
 - First-order methods: BFGS and SPG
- Optimal Control for the reduced-order Burgers' equation
- 5 Summary and future research

Introduction ●○○	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook 00	Literature
Nonlinea	ar dynamical sy	vstems			

$$\dot{\mathbf{y}}(t) = A\mathbf{y}(t) + \mathbf{F}(t, \mathbf{y}(t)), \quad \mathbf{y}(t) \in \mathbb{R}^{N}$$

$$\mathbf{y}(0) = \mathbf{y}_{0}$$
(1)

- arises in many applications, e.g. mechanical systems, fluid dynamics, neuron modeling, ...
- the matrix A represents the linear dynamical behavior and the function **F** represents nonlinear dynamics
- often large dimension of (1) leads to huge computational work

Introduction ●○○	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook 00	Literature
Nonlinea	nr dvnamical sv	/stems			

$$\dot{\mathbf{y}}(t) = A\mathbf{y}(t) + \mathbf{F}(t, \mathbf{y}(t)), \quad \mathbf{y}(t) \in \mathbb{R}^{N}$$

$$\mathbf{y}(0) = \mathbf{y}_{0}$$
(1)

- arises in many applications, e.g. mechanical systems, fluid dynamics, neuron modeling, ...
- the matrix A represents the linear dynamical behavior and the function **F** represents nonlinear dynamics
- often large dimension of (1) leads to huge computational work

Introduction ●○○	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook 00	Literature
Nonlinea	nr dvnamical sv	/stems			

$$\dot{\mathbf{y}}(t) = A\mathbf{y}(t) + \mathbf{F}(t, \mathbf{y}(t)), \quad \mathbf{y}(t) \in \mathbb{R}^{N}$$

$$\mathbf{y}(0) = \mathbf{y}_{0}$$
(1)

- arises in many applications, e.g. mechanical systems, fluid dynamics, neuron modeling, ...
- the matrix A represents the linear dynamical behavior and the function F represents nonlinear dynamics
- often large dimension of (1) leads to huge computational work

Introduction ●○○	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook 00	Literature
Nonlinea	ar dynamical sy	vstems			

$$\dot{\mathbf{y}}(t) = A\mathbf{y}(t) + \mathbf{F}(t, \mathbf{y}(t)), \quad \mathbf{y}(t) \in \mathbb{R}^{N}$$

$$\mathbf{y}(0) = \mathbf{y}_{0}$$
(1)

- arises in many applications, e.g. mechanical systems, fluid dynamics, neuron modeling, ...
- the matrix A represents the linear dynamical behavior and the function F represents nonlinear dynamics
- often large dimension of (1) leads to huge computational work

Introduction ○●○	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook 00	Literature

The idea of model order reduction

Approximate the state via

$$\mathbf{y}(t) pprox U_\ell \tilde{\mathbf{y}}(t), \quad U_\ell \in \mathbb{R}^{N imes \ell}, \tilde{\mathbf{y}} \in \mathbb{R}^\ell,$$

where the matrix U_{ℓ} has orthonormal columns, the so-called *principal components* of **y**, and $\ell \ll N$.

Galerkin projection of the original full-order system leads to a reduced system of ℓ equations:

$$U_{\ell}^{T} \left[U_{\ell} \dot{\tilde{\mathbf{y}}} - A U_{\ell} \tilde{\mathbf{y}} - \mathbf{F}(t, U_{\ell} \tilde{\mathbf{y}}) \right] = 0$$

$$\Rightarrow \quad \dot{\tilde{\mathbf{y}}} = \underbrace{U_{\ell}^{T} A U_{\ell}}_{=:\tilde{A}} \tilde{\mathbf{y}} + U_{\ell}^{T} \mathbf{F}(t, U_{\ell} \tilde{\mathbf{y}})$$

Introduction ○●○	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook 00	Literature

The idea of model order reduction

Approximate the state via

$$\mathbf{y}(t) pprox U_{\ell} \tilde{\mathbf{y}}(t), \quad U_{\ell} \in \mathbb{R}^{N imes \ell}, \tilde{\mathbf{y}} \in \mathbb{R}^{\ell},$$

where the matrix U_{ℓ} has orthonormal columns, the so-called *principal components* of **y**, and $\ell \ll N$.

Galerkin projection of the original full-order system leads to a reduced system of ℓ equations:

$$U_{\ell}^{T} \left[U_{\ell} \dot{\tilde{\mathbf{y}}} - A U_{\ell} \tilde{\mathbf{y}} - \mathbf{F}(t, U_{\ell} \tilde{\mathbf{y}}) \right] = 0$$

$$\Rightarrow \quad \dot{\tilde{\mathbf{y}}} = \underbrace{U_{\ell}^{T} A U_{\ell}}_{=:\tilde{A}} \tilde{\mathbf{y}} + U_{\ell}^{T} \mathbf{F}(t, U_{\ell} \tilde{\mathbf{y}})$$

Introduction ○○●	POD-DEIM algorithm	Optimal Control 000	Burgers'equation	Outlook ○○	Literature
Two que	stions are left				

Considering the reduced model

$$\dot{ ilde{\mathbf{y}}}(t) = ilde{A} \widetilde{\mathbf{y}}(t) + U_\ell^\mathsf{T} \mathsf{F}(t, U_\ell \widetilde{\mathbf{y}}(t)), \quad \widetilde{\mathbf{y}}(t) \in \mathbb{R}^\ell$$

two questions are left:

- **(**) How to obtain the matrix U_ℓ of principal components ?
- ② Note that $U_{\ell}\tilde{\mathbf{y}}(t) \in \mathbb{R}^N$ is still large. How do we evaluate $\mathbf{F}(t, U_{\ell}\tilde{\mathbf{y}}(t))$ efficiently ?

Introduction ○○●	POD-DEIM algorithm	Optimal Control 000	Burgers'equation	Outlook ○○	Literature
Two que	stions are left				

Considering the reduced model

$$\dot{ ilde{\mathbf{y}}}(t) = ilde{A} \widetilde{\mathbf{y}}(t) + U_\ell^\mathsf{T} \mathsf{F}(t, U_\ell \widetilde{\mathbf{y}}(t)), \quad \widetilde{\mathbf{y}}(t) \in \mathbb{R}^\ell$$

two questions are left:

How to obtain the matrix U_ℓ of principal components ?
Note that U_ℓỹ(t) ∈ ℝ^N is still large. How do we evaluate F(t, U_ℓỹ(t)) efficiently ?

Introduction ○○●	POD-DEIM algorithm	Optimal Control 000	Burgers'equation	Outlook ○○	Literature
Two que	stions are left				

Considering the reduced model

$$\dot{ ilde{\mathsf{y}}}(t) = ilde{\mathsf{A}} ilde{\mathsf{y}}(t) + U_\ell^\mathsf{T} \mathsf{F}(t, U_\ell ilde{\mathsf{y}}(t)), \quad ilde{\mathsf{y}}(t) \in \mathbb{R}^\ell$$

two questions are left:

- **(**) How to obtain the matrix U_ℓ of principal components ?
- Ote that U_ℓỹ(t) ∈ ℝ^N is still large. How do we evaluate F(t, U_ℓỹ(t)) efficiently ?

During the numerical simulation, build up the snapshot matrix

$$Y := [\mathbf{y}(t_1), ..., \mathbf{y}(t_{n_s})] \in \mathbb{R}^{N \times n_s},$$

with n_s being the number of snapshots.

Perform a Singular Value Decomposition (SVD)

$$Y = U\Sigma V^T$$

and let $U_{\ell} := U(:, 1:1)$ consist of those left singular vectors of Y that correspond to the ℓ largest singular values in Σ .

 Introduction
 POD-DEIM algorithm
 Optimal Control
 Burgers' equation
 Outlook
 Literature

 Discrete Empirical Interpolation Method (DEIM)
 The Discrete Empirical Interpolation Method (DEIM)
 The Discrete Empirical Interpolation Method (DEIM)

Consider the nonlinearity

$$\mathsf{N} := \underbrace{U_{\ell}^{\mathsf{T}}}_{\ell \times \mathsf{N}} \underbrace{\mathsf{F}(t, U_{\ell} \tilde{\mathsf{y}}(t))}_{\mathsf{N} \times 1}$$

The approximation

$$\mathbf{F} \approx W \mathbf{c}, \quad W \in \mathbb{R}^{N \times m}, \mathbf{c} \in \mathbb{R}^{m}$$

is over-determined. Therefore, find projector $\mathcal P$ such that:

$$\mathcal{P}^{T}\mathbf{F} = (\mathcal{P}^{T}W)\mathbf{c} \quad \Rightarrow \quad \mathbf{F} \approx W\mathbf{c} = W(\mathcal{P}^{T}W)^{-1}\mathcal{P}^{T}\mathbf{F}$$
$$\Rightarrow \quad \mathbf{N} \approx U_{\ell}^{T}W\underbrace{(\mathcal{P}^{T}W)}_{m \times m}^{-1}\mathcal{P}^{T}\mathbf{F}(t, U_{\ell}\widetilde{\mathbf{y}}(t))$$

 Introduction
 POD-DEIM algorithm
 Optimal Control
 Burgers' equation
 Outlook
 Literature

 Discrete Empirical Interpolation Method (DEIM)
 The Discrete Empirical Interpolation Method (DEIM)</t

Consider the nonlinearity

$$\mathsf{N} := \underbrace{U_{\ell}^{\mathsf{T}}}_{\ell \times \mathsf{N}} \underbrace{\mathsf{F}(t, U_{\ell} \tilde{\mathsf{y}}(t))}_{\mathsf{N} \times 1}$$

The approximation

$$\mathbf{F} \approx W \mathbf{c}, \quad W \in \mathbb{R}^{N \times m}, \mathbf{c} \in \mathbb{R}^{m}$$

is over-determined. Therefore, find projector $\mathcal P$ such that:

$$\mathcal{P}^{T}\mathbf{F} = (\mathcal{P}^{T}W)\mathbf{c} \quad \Rightarrow \quad \mathbf{F} \approx W\mathbf{c} = W(\mathcal{P}^{T}W)^{-1}\mathcal{P}^{T}\mathbf{F}$$
$$\Rightarrow \quad \mathbf{N} \approx U_{\ell}^{T}W\underbrace{(\mathcal{P}^{T}W)}_{m \times m}^{-1}\mathcal{P}^{T}\mathbf{F}(t, U_{\ell}\tilde{\mathbf{y}}(t))$$

Introduction	POD-DEIM algorithm	Optimal Control	Burgers' equation	Outlook	Literature
	000000000000000000000000000000000000000				
Discrete Empirical	Interpolation Method (DEIM	1)			

Algorithm 1 The DEIM algorithm [Chaturantabut, Sorensen, 2010]

1: INPUT:
$$\{\mathbf{w}_i\}_{i=1}^m \subset \mathbb{R}^N$$
 linear independent
2: OUTPUT: $\vec{\wp} = [\wp_1, ..., \wp_m]^T \in \mathbb{R}^m, \ \mathcal{P} \in \mathbb{R}^{N \times m}$
3: $[|\rho|, \wp_1] = \max\{|\mathbf{w}_1|\}$
4: $W = [\mathbf{w}_1], \ \mathcal{P} = [\mathbf{e}_{\wp_1}], \ \vec{\wp} = [\wp_1]$
5: for $i = 2$ to m do
6: Solve $(\mathcal{P}^T W)\mathbf{c} = \mathcal{P}^T\mathbf{w}_i$ for \mathbf{c}
7: $\mathbf{r} = \mathbf{w}_i - W\mathbf{c}$
8: $[|\rho|, \wp_i] = \max\{|\mathbf{r}|\}$
9: $W \leftarrow [W \ \mathbf{w}_i], \ \mathcal{P} \leftarrow [\mathcal{P} \ \mathbf{e}_{\wp_i}], \ \vec{\wp} \leftarrow \begin{bmatrix} \vec{\wp} \\ \wp_i \end{bmatrix}$
10: end for

Let m = 3. Suppose the DEIM-algorithm has chosen indices $\wp_1, ..., \wp_m$ such that:

Assuming that $F(\cdot)$ acts pointwise, we obtain:

$$\mathsf{N} \approx U_{\ell}^{\mathsf{T}} W (\mathcal{P}^{\mathsf{T}} W)^{-1} \mathcal{P}^{\mathsf{T}} \mathsf{F}(t, U_{\ell} \tilde{\mathsf{y}}(t))$$
$$= \underbrace{U_{\ell}^{\mathsf{T}} W (\mathcal{P}^{\mathsf{T}} W)^{-1}}_{\ell \times m} \underbrace{\mathsf{F}(t, \mathcal{P}^{\mathsf{T}} U_{\ell} \tilde{\mathsf{y}}(t))}_{m \times 1}$$

Introduction	POD-DEIM algorithm ○○○○○●○○○○○○○	Optimal Control	Burgers' equation	Outlook 00	Literature
Application: MOF	R for Burgers' equation				

The nonlinear 1D Burgers' model

$$y_t + \left(\frac{1}{2}y^2 - \nu y_x\right)_x = f, \quad (x, t) \in (0, L) \times (0, T),$$

$$y(t, 0) = y(t, L) = 0, \quad t \in (0, T),$$

$$y(0, x) = y_0(x), \quad x \in (0, L).$$

• FEM-discretization in space leads to:

$$egin{aligned} M\dot{\mathbf{y}}(t) &= -rac{1}{2}B\mathbf{y}^2(t) - \mathbf{v}C\mathbf{y}(t) + \mathbf{f}, \quad t > 0 \ \mathbf{y}(0) &= \mathbf{y}_0 \end{aligned}$$

2 Time integration via implicit Euler + Newton's method

 Introduction
 POD-DEIM algorithm
 Optimal Control
 Burgers' equation
 Outlook
 Literature

 Application:
 MOR for Burgers' equation
 POD-DEIM for Burgers' equation
 Outlook
 Control
 Outlook
 Contro
 Outlook
 Control
 <

Suppose, Φ_ℓ is an M-orthogonal POD basis.

The POD reduced Burgers' equation

$$\overbrace{\boldsymbol{\psi}_{\ell}^{T} M \boldsymbol{\Phi}_{\ell}}^{=l_{\ell}} \dot{\tilde{\mathbf{y}}}(t) = -\frac{1}{2} \boldsymbol{\Phi}_{\ell}^{T} \boldsymbol{B} (\boldsymbol{\Phi}_{\ell} \tilde{\mathbf{y}}(t))^{2} - \nu \boldsymbol{\Phi}_{\ell}^{T} \boldsymbol{C} \boldsymbol{\Phi}_{\ell} \tilde{\mathbf{y}}(t)$$

$$\Rightarrow \quad \dot{\tilde{\mathbf{y}}}(t) = -\frac{1}{2} \boldsymbol{B}_{\ell} (\boldsymbol{\Phi}_{\ell} \tilde{\mathbf{y}}(t))^{2} - \nu \boldsymbol{C}_{\ell} \tilde{\mathbf{y}}(t)$$

Next, obtain W via a truncated SVD of $[y^2(t_1),...,y^2(t_{n_s})]$ and apply DEIM to the columns of W.

The POD-DEIM reduced Burgers' equation

$$\dot{\tilde{y}}(t) = -\frac{1}{2}\tilde{B}(\tilde{F}\tilde{\mathbf{y}}(t))^2 - \nu \tilde{C}\tilde{\mathbf{y}}(t),$$

with $\tilde{B} = \Phi_{\ell}^{T} BW(\mathcal{P}^{T} W)^{-1} \in \mathbb{R}^{\ell \times m}$, $\tilde{F} = \mathcal{P}^{T} \Phi_{\ell} \in \mathbb{R}^{m \times \ell}$, and $\tilde{C} = C_{\ell} \in \mathbb{R}^{\ell \times \ell}$

 Introduction
 POD-DEIM algorithm
 Optimal Control
 Burgers' equation
 Outlook
 Literature

 Application:
 MOR for Burgers' equation
 POD-DEIM for Burgers' equation
 Outlook
 Control
 Control
 Outlook
 Control
 Control
 Outlook
 Control
 Contro
 Control
 Control

Suppose, Φ_ℓ is an M-orthogonal POD basis.

The POD reduced Burgers' equation

$$\begin{split} & \overbrace{\boldsymbol{\Phi}_{\ell}^{\mathsf{T}} M \boldsymbol{\Phi}_{\ell}}^{=l_{\ell}} \dot{\tilde{\mathbf{y}}}(t) = -\frac{1}{2} \boldsymbol{\Phi}_{\ell}^{\mathsf{T}} B (\boldsymbol{\Phi}_{\ell} \tilde{\mathbf{y}}(t))^{2} - \nu \boldsymbol{\Phi}_{\ell}^{\mathsf{T}} C \boldsymbol{\Phi}_{\ell} \tilde{\mathbf{y}}(t) \\ & \Rightarrow \quad \dot{\tilde{\mathbf{y}}}(t) = -\frac{1}{2} B_{\ell} (\boldsymbol{\Phi}_{\ell} \tilde{\mathbf{y}}(t))^{2} - \nu C_{\ell} \tilde{\mathbf{y}}(t) \end{split}$$

Next, obtain W via a truncated SVD of $[\mathbf{y}^2(t_1), ..., \mathbf{y}^2(t_{n_s})]$ and apply DEIM to the columns of W.

The POD-DEIM reduced Burgers' equation

$$\dot{\tilde{y}}(t) = -\frac{1}{2} \tilde{\boldsymbol{B}}(\tilde{F}\tilde{\mathbf{y}}(t))^2 - \nu \tilde{C}\tilde{\mathbf{y}}(t),$$

with $\tilde{B} = \Phi_{\ell}^{T} BW(\mathcal{P}^{T}W)^{-1} \in \mathbb{R}^{\ell \times m}$, $\tilde{F} = \mathcal{P}^{T} \Phi_{\ell} \in \mathbb{R}^{m \times \ell}$, and $\tilde{C} = C_{\ell} \in \mathbb{R}^{\ell \times \ell}$.

 $\ell = 3, m = 13$

 $\ell = 5, m = 13$

 $\ell = 7, m = 13$

Introduction	POD-DEIM algorithm ०००००००००००●०	Optimal Control 000	Burgers' equation	Outlook 00	Literature			
Application: MOF	Application: MOR for Burgers' equation							
Computa	tional Speedur	o [1]						

Conclusion: High accuracy of the POD-DEIM reduced model. *But is it also faster?*

- \bullet Spatial discretization of the full model depends on viscosity parameter ν
- choose ℓ, m such that relative L_2 -error in $\mathcal{O}(10^{-4})$

Introduction	POD-DEIM algorithm ○○○○○○○○○○○○	Optimal Control 000	Burgers' equation	Outlook 00	Literature			
Application: MOF	Application: MOR for Burgers' equation							
Computa	tional Speedu	o [2]						

For a fixed $\nu = 0.01$, we could show the independence of the POD-DEIM reduced model of the full-order dimension N.

- Computation time for solving the POD-DEIM reduced Burgers' equation is almost constant (right)
- POD-DEIM almost 4 times faster than pure POD (left)

Introduction	POD-DEIM algorithm	Optimal Control	Burgers' equation	Outlook	Literature

PDE-constrained optimization

Minimize

 $\min_{u} \mathcal{J}(y(u), u),$

where y is the solution to a nonlinear, possibly time-dependent partial differential equation,

$$c(y, u) = 0.$$

- $\mathcal J$ is called objective function,
- in order to evaluate \mathcal{J} , we need to solve c(y, u) = 0 for y(u),
- solve with algorithms for unconstrained minimization problems.

Introduction	POD-DEIM algorithm	Optimal Control ●○○	Burgers' equation	Outlook 00	Literature
Second-order optir	nization algorithm				

A Newton-type optimization algorithm

Minimize $\mathcal{J}(y(u), u)$ in u using information of the first and second derivative.

Introduction	POD-DEIM algorithm	Optimal Control ○●○	Burgers' equation	Outlook ○○	Literature
Second-order opti	nization algorithm				
Gradient	computation v	via adjoints			

Consider the Lagrangian function

$$\mathcal{L}(y, u, \lambda) = \mathcal{J}(y, u) + \lambda^{T} c(y, u)$$

and **impose** the zero-gradient condition $\nabla_y \mathcal{L}(y, u, \lambda) = 0$. We derive the *adjoint equation*:

$$c_y(y(u), u)^T \lambda = -\nabla_y \mathcal{J}(y(u), u)$$

Algorithm 2 Computing $\nabla \hat{\mathcal{J}}(u)$ via adjoints [Heinkenschloss, 2008]

- 1: For a given control u, solve c(y, u) = 0 for the state y(u)
- 2: Solve the adjoint equation $c_y(y(u), u)^T \lambda = -\nabla_y \mathcal{J}(y(u), u)$ for $\lambda(u)$
- 3: Compute $\nabla \hat{\mathcal{J}}(u) = \nabla_u \mathcal{J}(y(u), u) + c_u(y(u), u)^T \lambda(u)$

Introduction	POD-DEIM algorithm	Optimal Control ○●○	Burgers' equation	Outlook ○○	Literature
Second-order opti	nization algorithm				
Gradient	computation v	via adjoints			

Consider the Lagrangian function

$$\mathcal{L}(y, u, \lambda) = \mathcal{J}(y, u) + \lambda^{T} c(y, u)$$

and **impose** the zero-gradient condition $\nabla_y \mathcal{L}(y, u, \lambda) = 0$.

We derive the *adjoint equation*:

$$c_y(y(u), u)^T \lambda = -\nabla_y \mathcal{J}(y(u), u)$$

Algorithm 3 Computing $\nabla \hat{\mathcal{J}}(u)$ via adjoints [Heinkenschloss, 2008]

- 1: For a given control u, solve c(y, u) = 0 for the state y(u)
- 2: Solve the adjoint equation $c_y(y(u), u)^T \lambda = -\nabla_y \mathcal{J}(y(u), u)$ for $\lambda(u)$
- 3: Compute $\nabla \hat{\mathcal{J}}(u) = \nabla_u \mathcal{J}(y(u), u) + c_u(y(u), u)^T \lambda(u)$

Introduction	POD-DEIM algorithm	Optimal Control ○○●	Burgers' equation	Outlook ○○	Literature
First-order method	ls: BFGS and SPG				
First-ord	er optimization	algorithms			

Instead of solving

$$\nabla^2 \mathcal{J}(y_k, u_k) s_k = -\nabla \mathcal{J}(y_k, u_k),$$

first-order methods approximate the Hessian via H_k and solve

$$H_k s_k = -\nabla \mathcal{J}(y_k, u_k).$$

- We have used Matlab implementations of the BFGS and the SPG method,
- ullet Evaluation of ${\mathcal J}$ and gradient computation as seen before,
- SPG easily allows to include bounds on the control, i.e. $u_{lower} \le u(t, x) \le u_{upper}$ which is used in many applications

Introduction	POD-DEIM algorithm	Optimal Control	Burgers' equation	Outlook	Literature
			00000000		

Optimal Control problem for Burgers' equation

Minimize

$$\min_{u} \frac{1}{2} \int_{0}^{T} \int_{0}^{L} [y(t,x) - z(t,x)]^{2} + \omega u^{2}(t,x) dx dt,$$

where y is a solution to the nonlinear Burgers' equation

$$y_t + \left(\frac{1}{2}y^2 - \nu y_x\right)_x = f + u, \quad (x, t) \in (0, L) \times (0, T),$$

$$y(t, 0) = y(t, L) = 0, \quad t \in (0, T),$$

$$y(0, x) = y_0(x), \quad x \in (0, L).$$

- *u* is the control that determines *y*
- z is the desired state

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation ⊙●○○○○○○○	Outlook 00	Literature
Control	goal				

We want to control the solution of Burgers' equation in such a way that it stays in the desired state $z(t, \cdot) = y_0, \forall t$:

Figure: Uncontrolled ($u \equiv 0$) and desired state for $\nu = 0.01$.

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook 00	Literature
Numerica	al treatment				

Discretize the objective function and Burgers' equation in time and space

- apply adjoints in order to compute gradient and Hessian
- Opply first-order or second-order optimization algorithm
- Explore the usage of a POD-DEIM reduced model

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation ००●००००००	Outlook 00	Literature
Numerica	al treatment				

- Discretize the objective function and Burgers' equation in time and space
- Apply adjoints in order to compute gradient and Hessian
- Apply first-order or second-order optimization algorithm
- Explore the usage of a POD-DEIM reduced model

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation ००●००००००	Outlook 00	Literature
Numerica	al treatment				

- Discretize the objective function and Burgers' equation in time and space
- Apply adjoints in order to compute gradient and Hessian
- S Apply first-order or second-order optimization algorithm
- Explore the usage of a POD-DEIM reduced model

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation ००●००००००	Outlook 00	Literature
Numerica	al treatment				

- Discretize the objective function and Burgers' equation in time and space
- Apply adjoints in order to compute gradient and Hessian
- O Apply first-order or second-order optimization algorithm
- Explore the usage of a POD-DEIM reduced model

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation ०००●०००००	Outlook 00	Literature

Numerical tests

Newton-type method for the full-order Burgers' model:

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation 0000€0000	Outlook	Literature

The corresponding optimal control at each iteration:

k = 0 (initial)

We propose the following algorithm for POD-DEIM reduced optimal control :

Initialization

Introduction	POD-DEIM algorithm	Optimal Control	Burgers' equation 000000€00	Outlook 00	Literature

Final state and control of the POD-DEIM reduced optimal control problem:

 $\ell = m = 7$

 $\ell = m = 15$

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation 0000000●0	Outlook 00	Literature
Computa	tional Speedu	o [3]			

Reduced optimal control using the Newton-type method:

- at final state: relative L_2 -error in $\mathcal{O}(10^{-2})$
- comparable value of the objective function at convergence
- use same stopping criteria for full-order and reduced model

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook 00	Literature

Computational Speedup [4]

Some other results.

For $\nu = 0.0001$, low-dimensional control leads to a speedup of ~ 20 for all three optimization methods.

SPG allows a bounded control $-2 \le u(t,x) \le 2$. For $\nu = 0.0001$, we obtained a speedup of 3.6 for POD and 8.8 for POD-DEIM.

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook ●○	Literature
Concludi	ng Remarks				

What I learnt:

- The accuracy of the reduced Burgers' model is of the same order when POD is extended by DEIM.
- Optimal Control of Burgers' equation using POD-DEIM leads to a speedup of \sim 100 for small $\nu.$
- For the reduced model, all derivatives need to be computed in terms of the reduced variable. This can be quite hard in practice.

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook ○●	Literature
Future R	esearch				

What I still want to learn:

 \bullet Use the POD basis Φ_ℓ also for dimension reduction of the control, i.e.

$$\mathbf{u}(t)pprox \Phi_\ell \widetilde{\mathbf{u}}(t) = \sum_{i=1}^\ell arphi_i \widetilde{u}_i(t)$$

- Extend Burgers' model to 2D/3D
- More sophisticated choice of reduced dimensions ℓ and m

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook ○○	Literature

This Master project was supervised by Marielba Rojas and Martin van Gijzen.

Thank you for your attention! Are there any questions or remarks?

https://github.com/ManuelMBaumann/MasterThesis

Introduction	POD-DEIM algorithm	Optimal Control 000	Burgers' equation	Outlook ○○	Literature

This Master project was supervised by Marielba Rojas and Martin van Gijzen.

Thank you for your attention! Are there any questions or remarks?

https://github.com/ManuelMBaumann/MasterThesis

Introduction	POD-DEIM algorithm	Optimal Control	Burgers' equation	Outlook	Litera

ture

Further information can be found in...

- S. Chaturantabut and D. Sorensen Nonlinear Model Reduction via Discrete Empirical Interpolation. SIAM Journal of Scientific Computing, 2010.
 - M. Heinkenschloss *Numerical solution of implicitly constrained optimization problems*. Technical report, Department of Computational and Applied Mathematics, Rice University, 2008.
 - K. Kunisch and S. Volkwein Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition. Journal of Optimization Theory and Applications, 1999.