
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Nonlinear Model Order Reduction using POD/DEIM
for Optimal Control of Burgers’ Equation

A thesis submitted to the
Delft Institute of Applied Mathematics

in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

Manuel Matthias Baumann

Delft, The Netherlands
July 8, 2013

Copyright © 2013 by Manuel M. Baumann. All rights reserved.

mailto:manuelmbaumann@gmail.com

MSc THESIS APPLIED MATHEMATICS

”Nonlinear Model Order Reduction using POD/DEIM
for Optimal Control of Burgers’ Equation”

Manuel M. Baumann

Delft University of Technology

Daily supervisor Responsible professor

Dr. ir. Martin van Gijzen Prof. dr. ir. Arnold Heemink

Dr. Marielba Rojas

Committee members

Prof. dr. ir. Arnold Heemink Prof. dr. ir. Cornelis Vuik

Dr. ir. Martin van Gijzen Dr. Marielba Rojas

July 8, 2013 Delft, The Netherlands

Contents

Contents i

List of Figures iii

List of Tables iv

List of Algorithms v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1
1.2 Previous work . 1
1.3 Research goals . 3
1.4 Chapter outline . 3

2 Model order reduction for nonlinear dynamical systems 5
2.1 The Proper Orthogonal Decomposition (POD) . 5

2.1.1 Optimality of the POD basis . 6
2.1.2 The projected reduced-order model . 7

2.2 The Discrete Empirical Interpolation Method (DEIM) 8
2.3 Application: POD-DEIM for the unsteady Burgers’ equation 11

2.3.1 Approximation error . 16
2.3.2 Use of POD-DEIM for parameter studies 17
2.3.3 Computational speedup for POD and POD-DEIM 18

3 Optimal control of partial differential equations 21
3.1 Newton-type methods using adjoint techniques for derivative computation 22

3.1.1 Using adjoint equations for gradient computation 23
3.1.2 Using adjoint equations for Hessian computation 24

3.2 Gradient-based optimization techniques . 26
3.2.1 The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method 26
3.2.2 The spectral projected gradient (SPG) method 28

3.3 Application: Optimal control of Burgers’ equation 30
3.3.1 Numerical results for a Newton-type method using adjoints 33
3.3.2 Numerical results for gradient-based optimization methods 38

4 Implementation and analysis of a POD-DEIM reduced model for the optimal
control of Burgers’ equation 39
4.1 A POD-DEIM reduced model for optimal control of Burgers’ equation 40
4.2 A Newton-type method for the POD-DEIM reduced model 41

i

ii CONTENTS

4.3 Low-dimensional control using individual control points 45
4.4 Performance and error analysis . 46

5 Summary and Future research 53
5.1 Overview and main results . 53
5.2 Outlook on future research questions . 54

Bibliography 57

A Numerical solution of Burgers’ equation 65
A.1 Spacial discretization via the finite element method 65
A.2 Time integration with the implicit Euler method 67

B Implementation issues 69
B.1 The truncated conjugant gradient (CG) method . 69
B.2 Armijo line search . 71
B.3 Matlab code . 72

C Notation 73

List of Figures

2.1 The location of the DEIM indices for example (2.11). 10
2.2 Numerical solution of the full-order Burgers’ equation for different viscosity parameters

ν = {0.1, 0.01, 0.001} and initial condition (2.14). 12
2.3 Distribution of the singular values for ν = 0.01 (left) and ν = 0.001 (right). 14
2.4 POD-DEIM approximations for different dimensions ` and m = 15, ν = 0.01. 15
2.5 Relative error of the POD and POD-DEIM approximation for a fixed number of DEIM

basis m = 15 (left) and a fixed number of POD basis ` = 15 (right). 16
2.6 Relative error of the POD-DEIM reduced model as a function of the reduced-model

dimensions ` and m. 17
2.7 Response of the full-order system and of the POD-DEIM reduced model for ν = 0.01. 18
2.8 Dependence of the reduced models on the full-order dimension N 20

3.1 Uncontrolled and desired state for ν = 0.01. 31
3.2 The state y at different stages k of the optimization iteration. 36
3.3 The control u at different stages k of the optimization iteration. 37
3.4 State y and corresponding optimal control u after convergence for different control

parameters ω = {0.05, 0.005, 0.0005} . 37
3.5 Optimal state (upper left), desired state (upper right), adjoint state (lower left) and op-

timal control (lower right) for a bounded control −2 ≤ u ≤ 2 using the SPG Algorithm
3.5. 38

4.1 Optimal control of the POD-DEIM reduced Burgers’ model using different dimensions. 44
4.2 Discretization of the interval [0,L] indicating only 3 discrete positions for control. . . . 45
4.3 Optimal control (right) and corresponding state (left) for ` = m = 11 and nc = 3

control points. 46
4.4 Error distribution of the optimal state obtained by the Newton-type method and a

POD and POD-DEIM reduced model. 47
4.5 Comparison of the L2-error of the POD and the POD-DEIM approximation when the

projection dimensions are increased. 48

iii

List of Tables

2.1 Comparison between POD and POD-DEIM for different values of ν. 19

3.1 Choice of parameters for the numerical results in Figure 3.2 and 3.3. 36

4.1 Results of the Newton-type optimization method 3.1 for ν = {0.01, 0.001, 0.0001}. . . 49
4.2 Results of the Newton-type optimization method 3.1 using a low-dimensional control

with nc = 3 and ν = {0.01, 0.001, 0.0001}. 50
4.3 Results of three different optimization algorithms and ν = 0.0001,nc = 3. 50
4.4 Number of evaluations of the cost function and the gradient for the first-order methods

in the setting of Table 4.3. 51
4.5 Results of the SPG method and a bounded control −2 ≤ u ≤ 2. 51

iv

List of Algorithms

2.1 The DEIM algorithm, [12] . 9

3.1 Truncated Newton-CG method with Armijo line search, [23] 23
3.2 Computing ∇Ĵ (u) via adjoints, [23] . 24
3.3 Computing the product ∇2Ĵ (u) · v via adjoints, [23] 26
3.4 Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, [39, Section 6.15] 28
3.5 Spectral projected gradient (SPG) method, [7] . 30
3.6 Algorithm 3.2 applied to the full-order discrete Burgers’ equation 34
3.7 Algorithm 3.3 applied to the full-order discrete Burgers’ equation 35

4.1 Algorithm 3.2 applied to the reduced Burgers’ model 41
4.2 Algorithm 3.3 applied to the reduced Burgers’ model 42
4.3 Optimal control: Iterative improvement of the reduced model 44

A.1 Euler implicit with Newton’s method . 67

B.1 The truncated CG algorithm for solving the Newton equation∇2Ĵ (uk)sk = −∇Ĵ (uk),
[23] . 70

B.2 Armijo line search algorithm, [39] . 71

Acknowledgements

This Master thesis has been written within the Erasmus Mundus Master’s program Com-
puter Simulations for Science and Engineering (COSSE)1. During the past two years of my
studies, I had the opportunity to study for one year at the Royal Institute of Technology
in Stockholm, Sweden, as well as the Technical University in Delft, the Netherlands. But
COSSE offers much more than the possibility to study at two world-known universities
in the field of Computer Science and Applied Mathematics and, therefore, I am mostly
thankful for the friendship and scientific influence of all the great people I met from all
over the world.

Since the beginning of my studies at TU Berlin more than five years ago, I was also sup-
ported by a scholarship of the Friedrich-Ebert foundation (FES)2. The FES is a political
foundation that mostly supports students from a so-called working class background. Dur-
ing my time as a stipend, I went to many interesting workshops and seminars, especially
in the field of development politics.

I would like to thank professor Volker Mehrmann and professor Günter Bärwolff from
TU Berlin who supported my application for COSSE. Because of them I felt encouraged to
apply for an international study program and the Erasmus Mundus scholarship. Professor
Mehrmann also gave crucial scientific advices to my thesis work whenever I was in Berlin.

Most of all, I would like to thank the (daily) supervisors of my Master thesis, Martin
van Gijzen and Marielba Rojas. Our weekly meetings, known as the 3M meetings, always
were inspiring, encouraging and, on a personal level, delightful. Both of you motivated
me to continue my scientific career with a PhD. Moreover, I would like to thank S lawomir
Szklarz who helped me in many respects since I arrived in Delft.

During the last two years of studying abroad, the support of my parents never ended
and I am very thankful for many of their advices during our Skype talks. Last but not
least, I would like to thank Jana. Only because of you, I never felt lonely away from
home.

1For more information, please visit: http://www.kth.se/en/studies/programmes/em/cosse
2Again, more information is available online: http://www.fes.de/studienfoerderung

vii

http://www.kth.se/en/studies/programmes/em/cosse
http://www.fes.de/studienfoerderung

Chapter 1

Introduction

1.1 Motivation

The efficient numerical solution of time-dependent partial differential equations (PDE)
plays an important role in various fields of application such as fluid dynamics [14, 54],
electromagnetics [37, 47] or heat transfer [25]. Often, those differential equations consist
of nonlinear terms which are challenging to solve numerically. Furthermore, in engineering
applications, one is often interested in an optimal solution of the considered PDE with
respect to a certain objective function. This leads to the mathematical field of PDE-
constrained optimization where a cost function is minimized and the PDE is considered
as a constraint. As an example, one might imagine the flow of a fluid in a certain domain
which is described by the nonlinear, time-dependent Navier-Stokes equations, cf. [15].
The objective in that context might be to optimize the shape of the domain such that a
desired flow behavior is obtained. This approach has, for example, been used in modern
airplane design, cf. [6, 21, 34] and the introductory examples therein.

Since the numerical treatment of modern engineering problems requires a huge com-
putational effort, one is interested in mathematical methods that reduce the dimension of
the underlying dynamical system in order to speedup the optimization problem tremen-
dously and, at the same time, lead to a good approximation to the optimal solution of
the original full-size problem. This leads to the field of Model Order Reduction (MOR)
which is a relatively new field of mathematics, especially when the considered dynamical
systems are nonlinear.

1.2 Previous work

Algorithms for MOR are best known in the context of linear control theory. Prominent
textbooks on the field of control theory are for instance [33, 38, 49], where so-called input-

1

2 CHAPTER 1. INTRODUCTION

state-output systems of the following form are considered,

ẋ = Ax + Bu,

y = Cx + Du,
(1.1)

where u is the input, x is the state of the system, and y is the output of the system.
The matrices A,B,C ,D are assumed to have the appropriate dimensions. Note that (1.1)
can be considered as a dynamical system for the special case when C equals the identity
matrix and D = 0. Then (1.1) simplifies to ẏ = Ay + Bu, and we consider u as the control
and y(u) as the solution of the dynamical system that depends on u. Dynamical systems
of this form arise for instance after spatial discretization of (linear) partial differential
equation with a control.

The aim of model order reduction is to derive a system of the form (1.1) with a similar
input-output relation but a state variable x of much smaller dimension. In the case of a
linear system, there exist a wide range of algorithms that obtain a reduced system and
that even guarantee a priori error estimates. The most important methods for linear MOR
are:

• Balanced Truncation,

• Moment Matching,

• Hankel-norm approximation,

• Krylov methods.

All of the methods above are discussed in detail in textbooks on linear MOR (cf. [1, 44])
or in lectures notes of courses on that subject [40]. A brief presentation can also be found
in the corresponding literature study for this thesis [5].

Nonlinear dynamical systems with control are of the form:

ẏ = f (y) + Bu, (1.2)

with f nonlinear. There exist relatively new numerical methods for MOR of (1.2) which
are of current scientific interest. Among them the method which is widely used in practice
is the so-called Proper Orthogonal Decomposition (POD) which is explained in detail in
[2, 53]. A detailed historical review of POD can be found in [28]. Therein, the authors
state the correspondence of POD, which is also known as Karhunen-Loève decomposition
(KLD), and the Principal Component Analysis (PCA) [26] which is used in statistics.
According to [28], the first usage of POD for MOR of dynamical system date back to the
1990s, cf. [18]. Note that POD does not lead to a reduction of the involved nonlinearity
and, therefore, although the dimension of POD-reduced models is lower, the complexity
of the nonlinear terms remains the same. The Discrete Empirical Interpolation Method
(DEIM) proposed by [10, 12] in 2010 is an extension of POD that aims to construct reduced

1.3. RESEARCH GOALS 3

systems that do not depend at all on the dimension of the full-order model. DEIM has
already been applied to complex dynamical processes, cf. [11], and has shown to lead to a
huge gain in computational complexity. Further methods for MOR of nonlinear system are
a generalization of balanced truncation to nonlinear systems [30] as well as a generalization
of moment matching [3, 13].

Since we want to apply MOR within the framework of optimal control of (nonlinear)
partial differential equations, we also want to refer to standard literature from the field of
optimal control and PDE-constrained optimization. A theoretical approach to this field is
for instance given by [31, 50] where questions like existence and uniqueness of an optimal
solution are considered. A more practical introduction to PDE-constrained optimization is
given in [9, 22, 32] and the technical report [23]. An introduction to classical optimization
methods is for instance given by [36, 39].

1.3 Research goals

The aim of this Master thesis is the evaluation of MOR techniques when applied in the
context of optimal control of nonlinear partial differential equations. In more detail, we are
interested in the approximation error of the optimal state and the computational benefit
when different optimization algorithms are applied to a reduced model obtained via a
POD-DEIM scheme. In [52], the author presents a general approach of the application of
POD to PDE-constrained optimization. As a standard test case, we consider the optimal
control of Burgers’ equation as in [23, 41]. In [29], the authors applied optimal control
algorithms to a POD-reduced model of Burgers’ equation with good results regarding
accuracy and performance of the reduced model. The main contribution of the present
work is, however, to extend the approach in [29] by applying DEIM to the POD-reduced
Burgers’ model. Especially for a small viscosity parameter ν, the full-size Burgers’ model
requires to be of large dimension in order to guarantee numerical stability. Since the POD-
DEIM reduced model is completely independent of the full-model dimension, significant
computational speedup can be obtained for any value of the parameter ν. We present
a comparison of the optimal control of Burgers’ equation when POD and POD-DEIM is
applied using three different optimization algorithms. The computational benefit of DEIM
within the framework of optimal control has been pointed out for each of the considered
optimization methods.

1.4 Chapter outline

The thesis work is structured as follows: In Chapter 2 we present an overview of MOR
methods for nonlinear dynamical system. This includes the method of POD and its
improvement, the DEIM method. We demonstrate the two methods by deriving a POD-
DEIM reduced model for the numerical solution of Burgers’ equation in the end of

4 CHAPTER 1. INTRODUCTION

Chapter 2. In Chapter 3, we present some methods for PDE-constrained optimization
which can be transformed in implicitly constrained optimization problems. We will focus
on two classes of algorithms, one that takes only information of the first derivative of
the objective function into account (first-order methods) and another approach that also
considers information of the Hessian of the objective function (second-order methods).
Also Chapter 3 ends with an application of the presented methods to the (full-order)
one-dimensional unsteady Burgers’ equation. Chapter 4 deals with a detailed comparison
of POD and POD-DEIM when applied to the optimal control of Burgers’ equation. We
present a complete derivation and implementation of both MOR methods and give an al-
gorithm that solves the optimal control problem on both reduced models. Also a detailed
consideration of the approximation error and the computational gain is presented for both,
a purely POD-reduced model and the model obtained by POD-DEIM. In chapter 5 we
give an outlook on future research questions that have not been considered in this thesis.

Chapter 2

Model order reduction for nonlinear
dynamical systems

In this chapter we present two methods for model order reduction of nonlinear dynamical
systems. First, we present the method of Proper Orthogonal Decomposition (POD) which
constructs a matrix U` ∈ RN×` such that the subspace U` := range(U`) is low-dimensional
and a Galerkin projection of the full-order dynamical system onto U` still captures most of
the dynamical behavior of the original system. An improvement of POD that also reduces
the dimension of the involved nonlinearity is given by the Discrete Empirical Interpolation
Method (DEIM). We end the chapter with an application of POD-DEIM to the nonlinear
Burgers’ equation and present both accuracy and performance of the reduced model in
comparison to the numerical solution of the full-order model. We will put a special focus
on the performance benefit of POD-DEIM compared to a purely POD-reduced model.

2.1 The Proper Orthogonal Decomposition (POD)

The focus of this chapter lies on nonlinear dynamical systems of the form
d
dt y(t) = Ay(t) + F(t,y(t)), t > 0, (2.1)

y(0) = y0, (2.2)

which for example arise after spatial discretization of time-dependent nonlinear partial
differential equations (PDEs). Therefore, we assume that the vector of unknowns y is
of dimension N and the function F : [0,T] × RN → RN captures the nonlinearity of
the dynamical behavior. We have chosen the form (2.1) in order to stress the difference
between a linear and a nonlinear term in the dynamical behavior. We will see that a POD-
reduction leads directly to a dimension reduction of the linear term while the evaluation
of the nonlinear term still depends on the full dimension N . We will denote the dimension
of the unknown vector y(t) with a capital N in order to remind that this is the large
dimension which we seek to reduce. In the same way, we will call the (small) dimensions

5

6 CHAPTER 2. MODEL ORDER REDUCTION FOR NONLINEAR DYNAMICAL SYSTEMS

that are obtained by MOR techniques with small letters `,m in order to point out that
`,m � N .

2.1.1 Optimality of the POD basis

The overall aim of POD is the projection of the governing equations (2.1)-(2.2) onto a
suitable subspace U` of dimension ` � N that captures most of the dynamical behavior
of the original system. In order to obtain this subspace, the so-called matrix of snapshots
defined as

Y := [y(t1),y(t2), ...,y(tns)] ∈ RN×ns , (2.3)

plays a key role. The solution vector y at ns different time instances form the columns of
the matrix Y . The integer ns is called the number of snapshots and typically, ns � N .

In this section, we will explain how a Singular Value Decomposition (SVD) of the
snapshot matrix (2.3) can be used to obtain an optimal projection space. More specifically,
we will refer to a resultfrom [53] that shows that the optimal `-dimensional projection
space is given by the span of those ` singular vectors of Y that correspond to the ` largest
singular values. The singular value decomposition of a rectangular matrix Y is given by
the following well-known theorem:

Theorem 2.1.1. (Singular value decomposition, [20]) Let Y ∈ RN×ns of rank d. Then
there exists a decomposition of the form

Y = U

D 0
0 0

V T =: U ΣV T , (2.4)

with U ∈ RN×N ,V ∈ Rns×ns orthogonal and D = diag(σ1, ..., σd) ∈ Rd×d
+ . The columns

in U = [u1, ...,uN] are called the (left) singular vectors of Y and for the singular values
σi it holds: σ1 ≥ σ2 ≥ ... ≥ σd > 0.

Proof. Can, for example, be found in [20, Theorem 2.5.2].

Note that due to the SVD, the following diagonalization holds

YY T = (U ΣV T)(U ΣV T)T = U Σ2U T , (2.5)

and, hence, the columns of U are eigenvectors of the matrix YY T with corresponding
eigenvalues λi = σ2

i > 0, i = 1, ..., d.
We will next consider the optimization problem (2.6) whose solution gives rise to the

practical computation of the POD basis. We seek for an orthonormal basis ϕ1, ..., ϕ` such
that the components of the snapshots y(t1), ...,y(tns) are maximized when expressed in
this basis. Therefore, it is desired to find the basis ϕ1, ..., ϕ` and the following theorem
states that the left singular vectors of Y solve the optimization problem (2.6).

2.1. THE PROPER ORTHOGONAL DECOMPOSITION (POD) 7

Theorem 2.1.2. (POD basis, [53]) Let Y ∈ RN×ns be the snapshot matrix (2.3) with
rank d ≤ min{N ,ns}. Further, let Y = U ΣV T be the singular value decomposition of Y
with orthogonal matrices U = [u1, ...,uN] and V = [v1, ...,vns] as in (2.4). Then, for any
` ∈ {1, ..., d} the solution to the optimization problem

max
ϕ1,...,ϕ`

∑̀
i=1

ns∑
j=1
|〈yj , ϕi〉|2 s.t. 〈ϕi , ϕj〉 = δi,j for 1 ≤ i, j ≤ ` (2.6)

is given by the left singular vectors {ui}`i=1. The vectors ϕ1, ..., ϕ` are called the POD
basis of rank `. Here, δi,j denotes the Kronecker delta.

Proof. The proof is given in [53, p. 5-6].

Note that this result is crucial for the practical usage of the POD method since it
presents a simple way how to compute the POD basis from the snapshot matrix. The op-
timal projection space it then given by U` = span{u1, ...,u`}. The choice of the dimension
` of the POD basis is important for the quality of the approximation of the POD model.
According to [53], there exists no theoretical bound for the approximation error depending
on `. Therefore, in practice the choice of ` has to be obtained heuristically. The ratio,

ε(`) :=
∑`

i=1 σ
2
i∑N

i=1 σ
2
i
, 1 ≤ ` ≤ N , (2.7)

gives a good estimate of the relationship between the energy of the reduced system and
the total energy. Note that ε(·) as a function of ` is growing fast when the considered
dynamical system is suitable for model order reduction, i.e. the first singular values are
large compared to the sum of all singular values. For instance, in the setting of Section
2.3 we present the distribution of the singular values for ν = 0.01 in Figure 2.3. The
numerical solution of the full-order model required a spatial discretization of N = 80 and
a POD dimension of ` = 9 already leads to ε(9) = 0.98 which seems to indicate that most
of the dynamical behavior of the full-order system can be captured by a POD reduced
model of dimension 9. This can also be seen in Figure 2.4.

2.1.2 The projected reduced-order model

In the previous section, we have shown that the optimal subspace U` that captures most of
the dynamical behavior of the original dynamical system is given by U` = span{u1, ...,u`},
where {ui}`i=1 form a POD basis of dimension `. In order to construct the POD reduced-
order model, we define the matrix U` := [u1, ...,u`]. Then, we can construct an approxi-
mation of the solution vector y in U` as:

y(t) ≈ U`ỹ(t), ỹ(t) ∈ R`.

8 CHAPTER 2. MODEL ORDER REDUCTION FOR NONLINEAR DYNAMICAL SYSTEMS

A reduced-order model for (2.1)-(2.2) in terms of ỹ(t) can be derived by a Galerkin
projection of (2.1) onto U`,

d
dt ỹ(t) = U T

` AU`ỹ(t) + U T
` F(t,U`ỹ(t))

=: Ãỹ(t) + Ñ(ỹ, t), (2.8)

with Ã := U T
` AU` ∈ R`×` and nonlinearity Ñ(ỹ, t) := U T

` F(t,U`ỹ(t)).
The corresponding initial condition is given by

ỹ(0) = U T
` y0.

We will refer to (2.8) as the POD-reduced model. Note that the linear part of the
dynamical system in (2.8) is represented by the matrix Ã ∈ R`×`. We see that the linear
term is already independent of the full-order dimension N .

2.2 The Discrete Empirical Interpolation Method (DEIM)

In the previous sections, we used the POD-Galerkin approach (2.8) to construct a reduced-
order model for the full order dynamical system (2.1)-(2.2). The system (2.8) is of (small)
dimension ` and the unknown ỹ is an `-dimensional approximation of y. However, the
evaluation of the nonlinear term Ñ(ỹ, t) still has computational complexity that depends
on the original problem size N as the following shows:

Ñ(ỹ, t) = U T
`︸︷︷︸

`×N

F(U`ỹ(t))︸ ︷︷ ︸
N×1

.

The DEIM method [12] is an efficient way to overcome this dependence on N and is,
therefore, considered as an improvement of the POD algorithm. To simplify notation,
let us denote from now on f(t) := F(U`ỹ(t)). We are looking for a low-dimensional
approximation:

f(t) ≈W c(t),

where W := [w1, ...,wm] ∈ RN×m and the coefficient vector c(t) ∈ Rm , as in the POD
approach. Indeed, in DEIM the projection space span{w1, ...,wm} is obtained by an SVD
of the snapshot matrix of the nonlinearity

F := [f(t1), f(t2), ..., f(tns)] ∈ RN×ns . (2.9)

Since f(t) = W c(t) is an overdetermined linear system of equations in c(t), we select
m distinguished rows from both sides of the system. Therefore, we define the matrix
P = [e℘1 , ..., e℘m] ∈ RN×m with e℘i = [0, ..., 0, 1, 0, ..., 0] ∈ RN having its non-zero entry
at the ℘i-th component. If PT W is nonsingular, the coefficient vector c(t) can uniquely
be determined from:

PT f(t) = (PT W)c(t),

2.2. THE DISCRETE EMPIRICAL INTERPOLATION METHOD (DEIM) 9

and we derive an approximation of f(t) as:

f(t) ≈W c(t) = W (PT W)−1PT f(t) =: f̂(t). (2.10)

Note that the matrix-vector multiplication PT f(t) is never computed in the standard way
since this would imply a dependence of the computational complexity on N because f(t)
is an N -dimensional vector. Instead, a left multiplication with PT is by construction
equivalent to the selection of m entries of the vector f(t) which is an O(m) operation.

The nonlinear term in (2.8) can, thus, be computed via

Ñ(ỹ, t) ≈ U T
` W (PT W)−1PTF(U`ỹ(t))

(∗)= U T
` W (PT W)−1︸ ︷︷ ︸

`×m

F(PT U`ỹ(t))︸ ︷︷ ︸
m×1

,

where we have assumed that the function F(·) only acts pointwise on its input vector.
Hence, it is possible in step (∗) to first select the m components of the input vector and
then evaluate the function F. The resulting approximation of Ñ(ỹ, t) does not depend
on the dimension N of the full order system and, moreover, we note that the matrix
U T
` W (PT W)−1 does not depend on time and can, thus, be pre-computed. Note that

DEIM can also be applied to general nonlinear functions that are not pointwise. We refer
the reader to [12] for more details.

It remains to describe how the m entries of f(t) are selected in DEIM such that the
approximation f̂(t) in formula (2.10) is optimal. An algorithm that successively constructs
the matrix P for a given input basis w1, ...,wm is proposed in [12, Section 3.1] and
presented here as Algorithm 2.1. In the initialization step, the first index ℘1 ∈ {1, ...,N}
is selected corresponding to the largest components in magnitude of the first input basis
vector w1. The loop over i = 2 to i = m selects the indices corresponding to the largest
component of the residual r between the input basis wi and its approximation within the
subspace span{w1, ...,wi−1}.

Algorithm 2.1 The DEIM algorithm, [12]
1: INPUT: {wi}m

i=1 ⊂ RN linear independent
2: OUTPUT: ~℘ = [℘1, ..., ℘m]T ∈ Rm, P ∈ RN×m

3: [|ρ|, ℘1] = max{|w1|}
4: W = [w1],P = [e℘1], ~℘ = [℘1]
5: for i = 2 to m do
6: Solve (PT W)c = PTwi for c
7: r = wi −W c
8: [|ρ|, ℘i] = max{|r|}

9: W ← [W wi],P ← [P e℘i], ~℘←
[
~℘

℘i

]
10: end for

10 CHAPTER 2. MODEL ORDER REDUCTION FOR NONLINEAR DYNAMICAL SYSTEMS

An illustrative example taken from [12] is given by the nonlinear parameterized func-
tion:

s(x, µ) = (1− x) cos(3πµ(x + 1))e−(1+x)µ, x ∈ [−1, 1], µ ∈ [1, π], (2.11)

to which the DEIM algorithm was applied based on 100 equidistantly spaced points xi ∈
[−1, 1] and 51 snapshots for µj ∈ [1, π]. Figure 2.1a shows that the first DEIM indices
obtained by Algorithm 2.1 are chosen in a region where most of the dynamics of s occurs.
In Figure 2.1b, it can be seen that for µ = 3.1, the approximation ŝ based on DEIM with
dimension m = 10 gives a good result compared to the 100-dimensional original model.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
POD bases and DEIM indices (1−6)

POD basis 1

POD basis 2

POD basis 3

POD basis 4

POD basis 5

POD basis 6

DEIM indices

(a) First six POD bases with DEIM points.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
µ = 3.1

x

exact
DEIM approx.

(b) DEIM approximation of dimension 10.

Figure 2.1: The location of the DEIM indices for example (2.11).

Theorem 2.2.1. (Error bound of DEIM approximation, [12]) Let f ∈ RN be an ar-
bitrary vector. Let {wi}mi=1 be the first m left singular vectors of the snapshot matrix
(2.9) (POD basis). From (2.10), the DEIM approximation of order m for f in the space
span{u1, ...,um} is

f̂ = W (PT W)−1PT f ,

where W := [w1, ...,wm] ∈ RN×m and P := [e℘1 , ..., e℘m] ∈ RN×m, with {℘1, ..., ℘m} being
obtained from Algorithm 2.1 with input basis {w1, ...,wm}. An error bound for f̂ is then
given by

‖f − f̂‖2 ≤ C · E∗(f),

where

C = ‖(PT W)−1‖2, E∗(f) = ‖(I −WW T)f‖2.

The constant C is bounded by

C ≤ (1 +
√

2N)m−1

|eT
℘1w1|

= (1 +
√

2N)m−1‖w1‖−1
∞ .

Proof. The proof is given in [12, p. 2747-2749].

2.3. APPLICATION: POD-DEIM FOR THE UNSTEADY BURGERS’ EQUATION 11

Not only does Theorem 2.2.1 give an error bound for the approximation obtained by
the DEIM algorithm, but the proof also established that the choice of the DEIM indices
in Algorithm 2.1 in fact minimizes the growth of ‖(PT W)−1‖2. Therefore, the algorithm
is optimal in the sense that the approximation error is minimized.

2.3 Application: POD-DEIM for the unsteady Burgers’ equation

The following example is taken from [29] where the authors applied POD to the one-
dimensional Burgers’ equation together with homogeneous Dirichlet boundary conditions
and a step function y0(x) as initial condition has been considered,

yt +
(1

2y2 − νyx

)
x

= f , (x, t) ∈ (0,L)× (0,T),

y(t, 0) = y(t,L) = 0, t ∈ (0,T),

y(0, x) = y0(x), x ∈ (0,L).

(2.12)

Burgers’ equation is a fundamental partial differential equation (PDE) from fluid dynamics
and is, for instance, used in gas dynamics. The formulation (2.12) is known as the con-
servative form of Burgers’ equation. Note that the numerical properties of (2.12) highly
depend on the viscosity parameter ν. For instance, when ν is small, the nonlinear term
influences the numerical solution more and the PDE is called stiff. This requires a small
time step for the time integration and a fine discretization in space.

For the numerical solution of the full-order system (2.12), we used a finite element
discretization in space using linear basis functions as described in Appendix A.1. This
approach leads to the following system of ODEs:

M ẏ(t) = −1
2By2(t)− νCy(t) + f , (2.13)

where M is the mass matrix, C is the stiffness matrix, and B represents the convective
term. For simplicity, we assume that the source term is zero, i.e. f ≡ 0. At this point, we
also need to specify the initial condition y0(x):

y0(x) =

1, if 0 ≤ x ≤ L
2

0, if L
2 < x ≤ L

⇒ y(0) = [1, ..., 1, 0, ..., 0]T ∈ RN . (2.14)

The system (2.13) with initial condition (2.14) can be integrated in time using the
implicit Euler method (see Appendix A.2). In Figure 2.2, we present the numerical solution
of (2.13)-(2.14) for different values of ν and L = T = 1.

12 CHAPTER 2. MODEL ORDER REDUCTION FOR NONLINEAR DYNAMICAL SYSTEMS

0

0.5

1

0
0.5

1

0

1.5

t

ν = 0.1

x

y
(t

,x
)

0

0.5

1

0
0.5

1

0

1.5

t

ν = 0.01

x

y
(t

,x
)

0

0.5

1

0
0.5

1

0

1.5

t

ν = 0.001

x

y
(t

,x
)

Figure 2.2: Numerical solution of the full-order Burgers’ equation for different viscosity parameters
ν = {0.1, 0.01, 0.001} and initial condition (2.14).

According to [29] the POD basis {ϕi}`i=1 can be obtained by solving the eigenvalue
problem:

YY T Mϕ = σ2ϕ, (2.15)

where Y is the matrix of snapshots as previously defined in (2.3), i.e. the columns of Y
are the solution of Burgers’ equation at different time instances.

Since the mass matrix M is symmetric and positive definite, there exists a Cholesky
decomposition of the form M = RT R. Multiplication of (2.15) from the left with R then
yields,

RYY T RT Rϕ = σ2Rϕ,

which is equal to

Ȳ Ȳ T ϕ̄ = σ2ϕ̄, (2.16)

for Ȳ := RY and ϕ̄ := Rϕ. Because of the relation (2.5) between the SVD and eigenvalues,
we can solve (2.16) and, thus, also (2.15) by the computation of an SVD of the matrix
Ȳ = RY ,

RY = U ΣV T . (2.17)

After choosing a suitable POD dimension `� N , let us define the matrix of left singular
vectors, U` := [u1, ..., u`], where ui are the columns of the matrix U in (2.17). Then, the
POD basis is given by:

Φ` := R−1U`, (2.18)

and we denote the columns of Φ` by ϕi such that Φ` = [ϕ1, ..., ϕ`]. The following ansatz
leads to an approximation of the original full-order solution,

y(t) ≈ Φ`ỹ(t) with ỹ(t) ∈ R`. (2.19)

The Galerkin projection of (2.13) onto span{ϕ1, ..., ϕ`} is given by

˙̃y(t) = −1
2B`(Φ`ỹ(t))2 − νC`ỹ(t), (2.20)

2.3. APPLICATION: POD-DEIM FOR THE UNSTEADY BURGERS’ EQUATION 13

with the matrices

B` := ΦT
` B ∈ R`×N , (2.21)

C` := ΦT
` CΦ` ∈ R`×`, (2.22)

and with the new mass matrix equal to the `× ` identity since:

M` := ΦT
` MΦ` = U T

` U` = I` ∈ R`×`. (2.23)

We will refer to (2.20) as the POD-reduced system. As shown in (2.23), due to the M-
orthogonality of the projection matrix Φ`, the mass matrix in the POD-reduced system
vanishes, and this leads to a simpler numerical treatment of (2.20) compared to the full-
order system (2.13). Note, that Φ`ỹ(t) ∈ RN is still of large dimension and, therefore, no
dimension reduction for the nonlinearity has been obtained so far. Also, the number of
columns of the reduced matrix B` is still of large dimension N .

The projected initial condition for the original system is:

Φ`ỹ(0) = y(0),

R−1U`ỹ(0) = y(0),

and, therefore, the initial condition for (2.20) can be obtained by pre-multiplication of the
full-size initial condition with the matrix product ΦT

` M as shown below:

ỹ(0) = U T
` Ry(0) = ΦT

` RT Ry(0) = ΦT
` My(0). (2.24)

As it has already been pointed out, the nonlinear term in (2.20) is still of large dimension
N . We will now apply the DEIM method in order to reduce the computational com-
plexity of evaluating the nonlinearity. Consider the snapshot matrix of the nonlinearity,
F := [y(t1)2, ...,y(tns)2] and the corresponding Singular Value Decomposition:

F = Uf Σf V T
f .

Again, by choosing the DEIM-dimension m, we are able to define the matrix of left
singular vectors, Um := [uf

1, ..., uf
m]T , which is used as an input basis for Algorithm 2.1.

From Algorithm 2.1, we obtain the projection matrix P and the nonlinear term becomes:

ΦT
` B(Φ`ỹ)2 = ΦT

` BUm(PT Um)−1PT (Φ`ỹ)2 (∗)= ΦT
` BUm(PT Um)−1︸ ︷︷ ︸

`×m

(PT Φ`︸ ︷︷ ︸
m×`

ỹ)2,

where the step (∗) is allowed since squaring is a componentwise operation.

14 CHAPTER 2. MODEL ORDER REDUCTION FOR NONLINEAR DYNAMICAL SYSTEMS

0 20 40 60 80
10

−20

10
−15

10
−10

10
−5

10
0

10
5

ν = 0.01

Singular values of RY
Singular values of F

0 20 40 60 80
10

−6

10
−4

10
−2

10
0

10
2

ν = 0.001

Singular values of RY
Singular values of F

Figure 2.3: Distribution of the singular values for ν = 0.01 (left) and ν = 0.001 (right).

The fully reduced POD-DEIM system is then given by

˙̃y(t) = −1
2 B̃(F̃ ỹ(t))2 − νC̃ ỹ(t), (2.25)

where

B̃ := ΦT
` BUf (PT Uf)−1 ∈ R`×m , (2.26)

C̃ := ΦT
` CΦ` ∈ R`×`, (2.27)

F̃ := PT Φ` ∈ Rm×`. (2.28)

Note that both matrices B̃ and F̃ can be pre-computed such that the system (2.25) is
indeed of dimension `×` and no dependence on the original size N exists anymore. As for
the full-order system (2.13), the POD-DEIM reduced system (2.25) was solved by means of
the implicit Euler method, see Appendix A.2. The choice of the dimensions of the reduced
model ` and m is crucial in order to obtain an accurate result of the reduced system that
reproduces the dynamics of the original system. A good estimate for the choice of `,m is
given by the ration of the truncated sum of the singular values and the sum of all singular
values given in (2.7). Therefore, we consider the distribution of the singular values of
the respective snapshot matrices in Figure 2.3. We see that especially for ν = 0.01, the
first singular values decay tremendously which gives rise to a good approximation of the
reduced system when only a small number for `,m is chosen. We will present in Figure
2.4 the behavior of the numerical solution of the POD-DEIM reduced system when the
DEIM-dimension m is fixed and ` is increased.

2.3. APPLICATION: POD-DEIM FOR THE UNSTEADY BURGERS’ EQUATION 15

0
0.5

1

0
0.5

1
0

1.5

t

ℓ = 3

x

y
ℓ
(t
,x

)

0
0.5

1

0
0.5

1
0

1.5

t

ℓ = 5

x

y
ℓ
(t
,x

)

0
0.5

1

0
0.5

1
0

1.5

t

ℓ = 7

x

y
ℓ
(t
,x

)

0
0.5

1

0
0.5

1
0

1.5

t

ℓ = 9

x

y
ℓ
(t
,x

)

0
0.5

1

0
0.5

1
0

1.5

t

ℓ = 11

x

y
ℓ
(t
,x

)

0
0.5

1

0
0.5

1
0

1.5

t

ℓ = 13

x

y
ℓ
(t
,x

)

Figure 2.4: POD-DEIM approximations for different dimensions ` and m = 15, ν = 0.01.

Figure 2.4 shows the convergence of the POD-DEIM reduced model to the full-order
solution. In each computation, a fixed DEIM dimension of m = 15 was used to approxi-
mate the nonlinear term in Burgers’ equation. If the dimension of the POD basis `, i.e.
the size of the projected model is increased, we see from Figure 2.4 that the numerical
solution of the reduced system converges towards a smooth solution that corresponds to
the solution of the original model.

16 CHAPTER 2. MODEL ORDER REDUCTION FOR NONLINEAR DYNAMICAL SYSTEMS

2.3.1 Approximation error

We now focus on the accuracy of the approximated system’s response computed with
reduced models. Let y be the response of the full-order system, y(`) = Φ`ỹ be the
response of the POD-reduced model (2.20) obtained with a POD basis of dimension `,
and let y(`,m) = Φ`ỹ be the response of a reduced model obtained with POD-DEIM (2.25),
with a POD basis is of dimension ` and a DEIM basis of dimension m. Then, we define the
L2(Ω) relative error in an approximate response ȳ with respect to the full-order-system’s
response y as:

ē :=
‖y− ȳ‖L2(Ω)
‖y‖L2(Ω)

≈

√
h · δt ·

∑
i,j [yi(tj)− ȳi(tj)]2√

h · δt ·
∑

i,j y2
i (tj)

, (2.29)

where Ω = [0,L]× [0,T], and h and δt are the step size in space and time, respectively. In
our test cases, we have chosen T = L = 1 and, hence, Ω = [0, 1]× [0, 1]. The approximate
response ȳ in (2.29) is ȳ = y(`) for POD and ȳ = y(`,m) for POD-DEIM.

In Figure 2.5, we show the behavior of the relative error when either the DEIM di-
mension is fixed (left) or the POD dimension is fixed (right). From the numerical results
that have been obtained for a viscosity parameter ν = 0.01 and a full-order dimension of
N = 80, we observe that the error of the POD and the POD-DEIM reduced model are
of the same magnitude until the POD dimension exceeds the DEIM-dimension which has
been fixed in the left plot to m = 15. When ` is larger than m in the left plot, we observe
that only the POD-reduced model is still improved while the error of the POD-DEIM
reduced model seems to be dominated by the error caused by the DEIM approximation
of size m = 15.

3 21 39
10

−6

10
−4

10
−2

10
0

ℓ

ē

ν = 0.01

POD
POD−DEIM

3 21 39
10

−3

10
−2

10
−1

10
0

m

ē

ν = 0.01

POD−DEIM

Figure 2.5: Relative error of the POD and POD-DEIM approximation for a fixed number of DEIM
basis m = 15 (left) and a fixed number of POD basis ` = 15 (right).

The right plot in Figure 2.5 shows the same behavior, i.e. an increase of the DEIM
dimension does not lead to a better approximation once it is larger than a given POD
basis dimension. In Figure 2.6, we observe this behavior for all combinations of (`,m)
in a range of 3:2:39. These observations seem to indicate that for optimal dimension

2.3. APPLICATION: POD-DEIM FOR THE UNSTEADY BURGERS’ EQUATION 17

reduction using the POD-DEIM approach, we need to choose ` and m in such a way that
they are almost of the same size.

3

39

3

39

10
−5

10
0

ℓ

ν = 0.01

m

ē

Figure 2.6: Relative error of the POD-DEIM reduced model as a function of the reduced-model
dimensions ` and m.

2.3.2 Use of POD-DEIM for parameter studies

In [11], the authors propose to use POD-DEIM also for parameter studies of a given
dynamical system. In the case of Burgers’ equation, this means that we simulate the
full-order system twice for two different values of the viscosity parameters νleft = 0.001
and νright = 0.1, using N = 400 grid points in space which is necessary when dealing
with very small values for ν. The numerical solutions of the full-order system for both
viscosity parameters were presented in Figure 2.2 where we can observe that the value of
the viscosity parameter plays a crucial role in the propagation of the initial impulse in time.
For large ν, the solution becomes much more diffusive and, therefore, the initial condition
vanishes very fast. For small ν, the initial condition is propagated in time almost without
losing height. The benefit of POD-DEIM for parameter studies is that a reduced model
can be obtained for any parameter ν that lies within the interval [νleft , νright] only from
data of the full-order model corresponding to νleft and νright . Suppose we are interested

18 CHAPTER 2. MODEL ORDER REDUCTION FOR NONLINEAR DYNAMICAL SYSTEMS

in an approximation of the numerical solution for 100 different viscosity parameter in
[νleft , νright], we only need to solve the full-order system twice and are able to obtain a
reduced model from these data.

The reduction is based on a Singular Value Decomposition of the combined matrices

Y = [Y`|Yr], F = [F`|Fr],

where Y` and F` are snapshot matrices of the solution and the nonlinearity corresponding
to νleft and Yr and Fr correspond to νright , respectively. The POD basis is then derived
using the snapshot matrix Y that contains information of the dynamical behavior of
Burgers’ equation with viscosity parameter νleft and νright . Similarly, the DEIM projection
matrix P is obtained from the matrix F .

In Figure 2.7, the POD-DEIM approximation for the viscosity parameter ν = 0.01
using the dimensions ` = m = 45 is presented as well as the full-order model of dimension
N = 400 for the same viscosity parameter. The plot shows the good quality of the
reduced system. At this point, we want to stress that in order to obtain the POD-DEIM
model in Figure 2.7, the simulation of the full-order system with parameter ν = 0.01 was
not taken into account. Therefore, the derivation of a reduced model for any parameter
ν ∈ [νleft , νright] only requires the computational work of the numerical solution of the
reduced system once the matrices Y and F are obtained.

Figure 2.7: Response of the full-order system and of the POD-DEIM reduced model for ν = 0.01.

2.3.3 Computational speedup for POD and POD-DEIM

In the previous chapters, the main focus lies on the size of the reduced system and the
quality of the approximation compared to the full-order system. In this section, we are
interested in the speedup of the computation when POD or POD-DEIM is applied. There-
fore, we consider the numerical solution of Burgers’ equation as described in Appendix A
for different viscosity parameters ν. From the numerical analysis of the full model, it is

2.3. APPLICATION: POD-DEIM FOR THE UNSTEADY BURGERS’ EQUATION 19

well-known that for different sizes of ν a different size of the spatial discretization is re-
quired in order to obtain a stable numerical solution. In 2.1, we have chosen the smallest
value of N for which the full-order solution is stable.

The following quantities have been measured during the numerical simulation:

• tsetup - The time which is required to pre-compute the matrices (2.21), (2.22) in the
case of pure POD and (2.26)-(2.28) in the case of POD-DEIM. Note that this only
has to be performed once.

• tPDEsol - The time for the numerical solution of Burgers’ equation. This has been
done via the implicit Euler method and a Newton iteration for the time integration
and a finite elements approach for the spatial discretization.

• ē[10−4] - The relative error in L2([0, 1]× [0, 1]) as defined in (2.29).

• S (1)
P - The overall speedup which is defined as the ratio of the computational time

for the full-order model and the respective reduced model.

• S (2)
P - The speedup when only the numerical solution of Burgers’ equation is taken

into account. Here, we neglect the time that is required for the pre-computation in
tsetup.

In order to obtain comparable results, we decided to choose the reduced dimensions `
and m such that the relative error ē in the response of each of the reduced models has the
same order of magnitude, ē ∈ O(10−4). Therefore, we indicate in the first row of Table 2.1
the important dimension from the respective model. In case of the full-order model, we
present the number N of ansatz function of the FEM discretization. For the pure POD
reduced model we give the size of the POD basis, `, and for the the POD-DEIM reduced
model we present the reduced dimensions as a tuple (`,m).

ν = 0.01 ν = 0.001 ν = 0.0001
Full POD DEIM Full POD DEIM Full POD DEIM

N /`/m 80 11 (11, 13) 200 35 (35, 40) 800 40 (40, 55)
tsetup[s] - 0.003 0.011 - 0.009 0.021 - 0.0729 0.182

tPDEsol [s] 0.068 0.047 0.040 0.232 0.12 0.055 4.416 0.276 0.085
ē[10−4] - 6.13 6.46 - 6.12 6.85 - 7.43 7.66

S (1)
P - 1.35 1.34 - 1.74 3.03 - 12.54 16.52

S (2)
P - 1.44 1.71 - 1.88 4.21 - 15.85 51.85

Table 2.1: Comparison between POD and POD-DEIM for different values of ν.

We first note that for all different sizes of the viscosity parameter ν ∈ {0.01, 0.001, 0.0001}
it is in general possible to derive a POD and POD-DEIM reduced model of a tremendously
smaller dimension and a high accuracy of ē ∈ O(10−4). The numerical tests of Table 2.1
are presented in order to illustrate two features of the POD-DEIM approach. Firstly, we

20 CHAPTER 2. MODEL ORDER REDUCTION FOR NONLINEAR DYNAMICAL SYSTEMS

see that the time which is required for the numerical solution of the POD-DEIM reduced
model does not increase when the size of the original problem, N , increases. On the
other hand, we see that the solution of the pure POD model still depends on the original
problem size and increases with N . This behavior is illustrated in Figure 2.8 where we
see that the increase in N only affects the computation time of the POD model. Its in-
dependence of the original (large) dimension is the reason for the large speedup obtained
when using the POD-DEIM reduced model. We see that for N = 3, 000, the POD-DEIM
model is almost five times faster than the pure POD model. Secondly, we observe that
in order to apply DEIM, it is more costly to apply the required pre-computations of the
matrices (2.26)-(2.28). This is mostly because two Singular Value Decompositions are
required in order to obtain the projection basis and the input basis for the DEIM Algo-
rithm 2.1. This is also the reason why the overall speedup S (1)

P of POD and POD-DEIM
for the presented test configurations is comparable even though DEIM leads to a higher
speedup. The most important observation from the results in Table 2.1 is, however, that
for the case ν = 0.0001 and N = 800, we are able to show a speedup of the POD-DEIM
method of more than 50 compared to the full model while POD only leads to a speedup
of ∼ 16. This speedup computation only takes into account the time that is required to
actually solve the reduced system numerically. Therefore, we conclude that DEIM leads
to a tremendous reduction in computational cost as long as we are able to pre-compute
the matrices (2.26)-(2.28) only once and then solve the reduced system many times. This
conclusion gives rise to the application of POD-DEIM within an optimization iteration as
described in the Chapter 3.

80 500 1.000 1.500 2.000 2.500 3.000
0

200

400

600

800

1000

N

S
P(2

)

ν = 0.01

POD
POD−DEIM

80 500 1.000 1.500 2.000 2.500 3.000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

N

t P
D

E
so

l [s
]

ν = 0.01

POD
POD−DEIM

Figure 2.8: Dependence of the reduced models on the full-order dimension N .

Chapter 3

Optimal control of partial differential
equations

We consider the following optimization problem,

min
u
J (y(u), u), (3.1)

where y is the solution to a nonlinear, possibly time-dependent partial differential equa-
tion,

c(y, u) = 0, (3.2)

and J is called the cost function or the objective function. Since in order to evaluate
(3.1) as a function of the control u we first need to solve the constraining PDE (3.2), the
optimization problem (3.1)-(3.2) is referred to as an implicitly-constrained optimization
problem in [22]. Standard references for the numerical solution of optimization problems
are [16, 27, 36]. In general, one distinguishes between gradient-based and Newton-type
methods which use information of the first and second derivative of the cost function,
respectively.

An alternative way to look at (3.1)-(3.2) is to consider the following constrained opti-
mization problem,

min
u
J (y, u),

subject to c(y, u) = 0,
(3.3)

where y is called the state and u is considered to be the control or the input of the problem
(3.3). Again, the scalar function J is usually called the cost function and the constraint
c is given by a nonlinear partial differential equation. Note, that y ∈ Rny and u ∈ Rnu are
typically high-dimensional and, therefore, the (given) functions J and c map as follows,

J : Rny × Rnu → R, c : Rny × Rnu → Rny .

21

22 CHAPTER 3. OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

As it is stated in (3.3), we seek for an optimal control u∗ = argminu J (y, u) that minimizes
the cost function J and at the same time fulfills the PDE c. In more detail, the control u
will appear on the right-hand side of the constraining partial differential equation c such
that the solution y will depend on u. We will therefore sometimes write y(u) in order to
indicate that the solution to the PDE is only unique after u is specified. Reference for
optimal control of partial differential equations are [9, 32, 50].

3.1 Newton-type methods using adjoint techniques for derivative computa-
tion

For an easier notation, let us introduce the objective function as a function of the control
only,

Ĵ (u) := J (y(u), u). (3.4)

The unconstrained optimization problem (3.1) then becomes,

min
u
Ĵ (u), (3.5)

where Ĵ : Rnu → R. Many textbooks on optimization deal with the numerical solution of
(3.5), cf. [16, 27, 36, 39].

A standard approach to solve the optimization problem (3.5) is by solving iteratively
the so-called Newton equation

∇2Ĵ (uk)sk = −∇Ĵ (uk), (3.6)

where an initial control u0 has to be chosen and in an outermost loop on k one tries to
reach convergence. In (3.6), sk is the search direction and ∇Ĵ and ∇2Ĵ are the gradient
and the Hessian of the objective function, respectively. Note that (3.6) is a system of
linear equations in the unknown search direction sk . The new control is computed as:

uk+1 = uk + α∗k · sk , (3.7)

where the optimal step size α∗k ∈ R+ has to be determined such that:

α∗k = argmin
αk∈R+

J (y(uk + αk · sk), uk + αk · sk). (3.8)

In practice, problem (3.8) is solved approximately using a selected criterion. The optimiza-
tion method in Algorithm 3.1 is a truncated-CG Newton method from [23]. In Algorithm
3.1, an Armijo line search strategy (see Appendix B.2) is used for approximately solving
(3.8) and a truncated Conjugate Gradient (CG) method is used for solving the Newton
equation (3.6), see Appendix B.1. The gradient and Hessian of the objective function are
computed efficiently by means of the adjoint technique as described in Section 3.1.1 and
3.1.2, respectively.

3.1. NEWTON-TYPE METHODS USING ADJOINT TECHNIQUES FOR DERIVATIVE
COMPUTATION 23

Algorithm 3.1 Truncated Newton-CG method with Armijo line search, [23]
1: Set initial control u0 = 0, stopping tolerances εJ , ε∇ > 0, max newtoncg ∈ N
2: for k = 0 to max newtoncg do
3: Solve c(yk , uk) = 0 for yk

4: Save Jold := J (yk , uk)
5: Compute ∇Ĵ (uk) via algorithm 3.2
6: if ‖∇Ĵ (uk)‖ < ε∇ then
7: return
8: end if
9: Solve the Newton equation ∇2Ĵ (uk)sk = −∇Ĵ (uk) via the truncated conjugate gradient

method, see Appendix B.1, and using Algorithm 3.3 to compute matrix-vector products
with ∇2Ĵ (uk)

10: Obtain α∗k ≈ argminαk∈R+ J (y(uk + αksk), uk + αsk) via the Armijo line search algorithm,
see Appendix B.2

11: Update uk+1 = uk + α∗ksk

12: if |Jold − J (y(uk+1), uk+1)| < εJ then
13: return
14: end if
15: end for

Note that in Algorithm 3.1, we have used two so-called numerical stopping criteria. The
tolerance ε∇ in line 6 determines when the gradient of the objective function is almost
zero which is a necessary condition to find a minimum. In line 12, the tolerance εJ checks
if the change of the value of the objective function during the optimization iteration is
sufficiently small.

3.1.1 Using adjoint equations for gradient computation

In order to derive an efficient numerical method to compute the gradient of Ĵ as pro-
posed in [23], let us introduce the Lagrangian function L which converts the constrained
optimization problem (3.3) into an unconstrained optimization problem. The Lagrangian
function is defined via

L : Rny × Rnu × Rny → R

L(y, u, λ) = J (y, u) + λT c(y, u), (3.9)

where λ is a new variable called the Lagrange multiplier. It is well-known that for all
optimal points (y∗, u∗) to the original constrained problem (3.3), there exists a λ∗ such
that (y∗, u∗, λ∗) is a stationary point of the Lagrangian function (3.9), cf. [46]. Stationary
points of (3.9) fulfill the first order optimality conditions (zero-gradient condition),

∇yL(y, u, λ) = 0, (3.10)

∇uL(y, u, λ) = 0, (3.11)

∇λL(y, u, λ) = 0, (3.12)

24 CHAPTER 3. OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

where the subscripts are used to denote partial derivatives with respect to the indicated
variable. Note, that from (3.12) the original constraint c(y, u) = 0 follows directly. Fur-
thermore, we will use (3.10) in order to derive the so-called adjoint equation which de-
termines the auxiliary variable λ. In the following, we will describe an efficient way to
compute ∇Ĵ (u) which appears on the right-hand side of (3.9) in Algorithm 3.1 based on
the conditions (3.10)-(3.12).

If we apply the gradient with respect to y to the Lagrangian function (3.9), i.e. use
relation (3.10), we derive:

cy(y(u), u)Tλ = −∇yJ (y(u), u), (3.13)

which is called the adjoint equations because from (3.13) we are able to determine the
adjoint variable λ.

Furthermore, from condition (3.12) we derive the constraint c(y, u) = 0 and, therefore,
we conclude by differentiation:

cy(y(u), u)yu(u) + cu(y(u), u) = 0,

which can be written as:

yu(u) = −cy(y(u), u)−1cu(y(u), u). (3.14)

The gradient on the right-hand side of (3.6) can, thus, be computed as:

∇Ĵ (u) = yu(u)T∇yJ (y(u), u) +∇uJ (y(u), u)
(3.14)= −cu(y(u), u)T cy(y(u), u)−T∇yJ (y(u), u) +∇uJ (y(u), u)
(3.13)= cu(y(u), u)Tλ(u) +∇uJ (y(u), u), (3.15)

where λ(u) is the solution to (3.13). Note, that in order to use (3.15) to compute the
gradient, the state y and also the adjoint λ are assumed to be computed after a specific
control u has been chosen. We emphasize this by the notation y(u) and λ(u), respectively.
A summary of the computation of ∇Ĵ (u) is stated in Algorithm 3.2.

Algorithm 3.2 Computing ∇Ĵ (u) via adjoints, [23]
1: For a given control u, solve c(y, u) = 0 for the state y(u)
2: Solve the adjoint equation cy(y(u), u)Tλ = −∇yJ (y(u), u) for λ(u)
3: Compute ∇Ĵ (u) = ∇uJ (y(u), u) + cu(y(u), u)Tλ(u)

3.1.2 Using adjoint equations for Hessian computation

In order to compute the Hessian of Ĵ , we first note that equation (3.15) can be written
as,

∇Ĵ (u) = ∇uL(y(u), u, λ(u)). (3.16)

3.1. NEWTON-TYPE METHODS USING ADJOINT TECHNIQUES FOR DERIVATIVE
COMPUTATION 25

The differentiation of (3.16) then gives,

∇2Ĵ (u) = ∇uyL(y(u), u, λ(u))yu(u) +∇uuL(y(u), u, λ(u)) +∇uλL(y(u), u, λ(u))λu(u),
(3.17)

where inner derivatives exist due to the dependence of y and λ on u. In order to compute
(3.17), we only need to determine the derivative λu(·) since an expression for yu(·) is given
by (3.14). In order to derive an expression for λu(·), we use relation (3.11) and differentiate
to obtain:

∇yyL(y(u), u, λ(u))yu(u) +∇yuL(y(u), u, λ(u)) +∇yλL(y(u), u, λ(u))λu(u) = 0

and, therefore,

λu(u) = (∇yλL(y(u), u, λ))−1 [−∇yyL(y(u), u, λ)yu(u)−∇yuL(y, u, λ)]

= (∇yλL(y(u), u, λ))−1
[
∇yyL(y(u), u, λ)cy(y(u), u)−1cu(y(u), u)−∇yuL(y, u, λ)

]
,

(3.18)

where (3.14) has been used to substitute yu(u).
From the definition (3.9), we see that ∇λL(y, u, λ) = c(y, u)T and, therefore the second

mixed derivatives are simply given by,

∇yλL(y, u, λ) = cy(y, u)T , ∇uλL(y, u, λ) = cu(y, u)T . (3.19)

If we plug-in (3.14) and (3.18) into (3.17) and use relation (3.19), we end up with,

∇2L̂(u) = cu(y(u), u)T cy(y(u), u)−T∇yyL(y(u), u, λ(u))cy(y(u), u)−1cu(y(u), u)

− cu(y(u), u)T cy(y(u), u)−T∇yuL(y(u), u, λ(u))

−∇uyL(y(u), u, λ(u))cy(y(u), u)−1cu(y(u), u) +∇uuL(y(u), u, λ(u)), (3.20)

which is obviously an identity that can be used to compute the nu × nu Hessian matrix.
In an efficient implementation, however, we want to avoid the computation of inverses.
Therefore, we introduce the following auxiliary variables,

w := cy(y(u), u)−1cu(y(u), u), (3.21)

p := cy(y(u), u)−T∇yyL(y(u), u, λ(u))cy(y(u), u)−1cu(y(u), u)

− cy(y(u), u)−T∇yuL(y(u), u, λ(u))

= cy(y(u), u)−T (∇yyL(y(u), u, λ(u))w −∇yuL(y(u), u, λ(u))) (3.22)

which is equivalent to solving the systems for w and p respectively,

cy(y(u), u)w = cu(y(u), u), (3.23)

cy(y(u), u)T p = ∇yyL(y(u), u, λ(u))w −∇yuL(y(u), u, λ(u)). (3.24)

The computation of the Hessian can, thus, be obtained in three steps as shown in Algo-
rithm 3.3. Note, that in Algorithm 3.3 we do not compute the whole Hessian matrix but

26 CHAPTER 3. OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

instead a matrix-vector product with the Hessian. This is the main computation required
by iterative linear solvers, such as the truncated CG algorithm (see Section B.1). Iterative
solvers are needed for large problems when the computation and storage of the full Hessian
is expensive.

Algorithm 3.3 Computing the product ∇2Ĵ (u) · v via adjoints, [23]
1: Assuming that for a given u we have already computed y(u), λ(u) in Algorithm 3.2
2: Solve the equation cy(y(u), u)w = cu(y(u), u)v for w
3: Solve the equation cy(y(u), u)T p = ∇yyL(y(u), u, λ(u))w −∇yuL(y(u), u, λ(u))v for p
4: Compute ∇2Ĵ (u)v = cu(y(u), u)T p −∇uyL(y(u), u, λ(u))w +∇uuL(y(u), u, λ(u))v

Note, that in most applications, mixed derivatives of the Lagrangian function vanish
which makes the computation of the Hessian easier. However, we will also point out
in Section 3.3 and 4.2 that the computation of second derivatives that are required in
Algorithm 3.3 are not trivial to compute in practice.

3.2 Gradient-based optimization techniques

Especially when dealing with large-scale optimization problems of the form (3.5), one is
interested in numerical algorithms that do not require the computation of the Hessian
matrix of the objective function. A straightforward approach to minimize a function is
to calculate the gradient of that function at each step of the iteration and set the search
direction equal to the negative gradient, sk = −∇Ĵ (uk). This method is referred to as
the steepest descent method and it is well-know that its convergence can be very slow, cf.
[51]. Therefore, the so-called quasi-Newton methods have been developed. The idea of
the quasi-Newton methods is to solve the Newton equation (3.6) without computing the
Hessian matrix explicitly but using an approximation to the Hessian. We then solve a
linear system of the form

Hksk = −∇Ĵ (uk), (3.25)

where Hk is an approximation of the Hessian at uk . In this section, we present the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method and the spectral projected gradient
(SPG) method which are two algorithms of the family of quasi-Newton methods. For the
computation of the gradient in (3.25), we refer to Algorithm 3.2 of the previous section.

3.2.1 The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method

We will present a short motivation of the famous BFGS method based on the textbooks
[36, 39]. The Matlab implementation that has been used in Section 3.3.2 can be found
in the immoptibox developed at the Technical University of Denmark, cf. [35]. We start
with the basic idea, that the approximation of the Hessian is improved in every iteration

3.2. GRADIENT-BASED OPTIMIZATION TECHNIQUES 27

of the BFGS method by an update,

Hk+1 = Hk + (∆H)k , H0 = I .

We will see that the initial choice H0 = I is equivalent to a steepest descent step in the
first iteration. In order to motivate the formula for (∆H)k , we introduce the second order
Taylor expansion of Ĵ (·) at u = uk+1,

Tk+1(u) = Ĵ (uk+1) +∇Ĵ (uk+1)(u − uk+1) + 1
2(u − uk+1)T Hk+1(u − uk+1). (3.26)

In order to improve the accuracy of the approximation (3.26) to the objective function Ĵ ,
we want to impose the condition that the gradients at u = uk are the same, i.e.

∇Tk+1(uk) = ∇Ĵ (uk). (3.27)

Note that this is an extra condition since from the Taylor approximation, it only follows
that Tk+1(uk+1) = Ĵ (uk+1) and ∇Tk+1(uk+1) = ∇Ĵ (uk+1).

In order to fulfill (3.27), we derive

∇Tk+1(uk) = ∇Ĵ (uk+1)− α∗kHk+1sk
!= ∇Ĵ (uk),

where the left-hand side of the above equation holds since uk − uk+1 = −α∗ksk and the
approximate Hessian Hk+1 is assumed to be symmetric. This leads to the so-called Secant
equation

Hk+1pk = gk , (3.28)

where pk := α∗ksk = uk+1 − uk and gk := ∇Ĵ (uk+1)−∇Ĵ (uk) are introduced.

Since the condition (3.27) does not lead to a unique solution of the update, we formulate
instead the following minimization problem,

Hk+1 = argmin
H

‖H −Hk‖,

s.t. H = H T ,Hpk = gk ,

(3.29)

where we are looking for a next iterate Hk+1 that is close to the previous approximate
Hessian and which is symmetric and fulfills the Secant equation. In [39], the solution to
(3.29) is presented when an appropriate matrix norm is chosen. For a certain weighted
Frobenius norm, the result for the update is given by,

(∆H)k = gkgT
k

gT
k pk

− HkpkpT
k Hk

pT
k Hkpk

.

We can summarize the BFGS method in the following algorithm.

28 CHAPTER 3. OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

Algorithm 3.4 Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, [39, Section 6.15]
1: Set initial control u0 = 0, H0 = I , stopping tolerances εJ , ε∇ > 0, max bfgs ∈ N
2: for k = 0 to max bfgs do
3: Solve c(yk , uk) = 0 for yk

4: Save Jold := J (yk , uk)
5: Compute ∇Ĵ (uk) via Algorithm 3.2
6: if ‖∇Ĵ (uk)‖ < ε∇ then
7: return
8: end if
9: Solve the Newton equation using the approximate Hessian, Hksk = −∇Ĵ (uk)

10: Obtain α∗k ≈ argminαk∈R+ J (y(uk + αksk), uk + αsk) using an appropriate line search algo-
rithm

11: Set new control, uk+1 = uk + α∗ksk

12: if |Jold − J (y(uk+1), uk+1)| < εJ then
13: return
14: end if
15: Set pk := α∗ksk

16: Set gk := ∇Ĵ (uk+1)−∇Ĵ (uk)
17: Compute Hk+1 = Hk + gkgT

k
gT

k pk
− HkpkpT

k Hk
pT

k Hkpk

18: end for

In [39], we also find that the linear system in line 9 of Algorithm 3.4 can be solved
easily since an analytic formula for the inverse is known:

H−1
k+1 = H−1

k + (pkgk + gT
k H−1

k gk)(pkpT
k)

(pT
k gk)2 − H−1

k gkpT
k pkgT

k H−1
k

pT
k gk

. (3.30)

3.2.2 The spectral projected gradient (SPG) method

The advantage of the SPG method is that we are able to solve optimization problems with
additional convex constraints, i.e.

min
u
Ĵ (u), subject to u ∈ Ωc, (3.31)

where Ωc is a convex subset of Rnu . Let ul < ur be an upper and a lower bound for the
control. In many applications, one is interested in limiting the control u in the following
way, ul ≤ u ≤ ur , which leads to a convex feasible set. Note that the control u can
be a multi-dimensional vector. In this case, the inequalities of the bound constraint are
understood componentwise and the domain Ωc is understood to be a hypercube. We
will denote the Euclidean projector onto Ωc by PΩc . Note that this projection can be
implemented efficiently in Matlab via,

proj(u) = min(max(u,ul),ur);

The following derivation of the SPG method is based on [7, 8]. We follow the same
approach as in Section 3.2.1 in the sense that we seek an approximate Hessian that fulfills

3.2. GRADIENT-BASED OPTIMIZATION TECHNIQUES 29

the Secant equation (3.28). Furthermore, we make a rank-1 ansatz for the approximate
Hessian,

Hk+1 = γk+1I , with γk+1 ∈ R.

The Secant equation (3.28) then reduces to γk+1pk = gk which is an over-determined
system of equations. The least-squares solution is given by,

γk+1 = argmin
γ
‖γpk − gk‖22 = pT

k gk
pT

k pk
,

which is known to be the Rayleigh quotient corresponding to an average Hessian matrix
as shown in detail in [7]. Because of the usage of the Rayleigh quotient in eigenvalue com-
putation, this method is also called a spectral method. Since by design, the approximate
Hessian is easily invertible, we can derive a search direction from the approximate Newton
equation (3.25),

ŝk = −H−1
k ∇Ĵ (uk) = − 1

γk︸︷︷︸
=:λk

∇Ĵ (uk) = −λk∇Ĵ (uk),

where we denote the inverse Rayleigh quotient by λk . Using this direction, the new iterate
ûk+1 = uk + ŝk = uk − λk∇Ĵ (uk) might not be within the bounds of Ωc. Therefore, we
need to project the new iterate onto Ωc and derive the new search direction according to
[7],

sk = PΩc(ûk+1)− uk = PΩc(uk − λk∇Ĵ (uk))− uk .

The complete SPG algorithm is presented next. For the line search algorithm used within
the SPG method, we refer to the original paper [7]. Also some details like the usage of
so-called safeguards 0 < λmin ≤ λmax < ∞ are not discussed here but in the references
[7, 8].

In Algorithm 3.5 we present to SPG method according to [7]. Note that in a similar
way as in Algorithm 3.1, we have included the numerical stopping criteria εJ and ε∇

in order to stop the optimization procedure when either the zero-gradient condition is
fulfilled or the change in the objective function is small.

30 CHAPTER 3. OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

Algorithm 3.5 Spectral projected gradient (SPG) method, [7]
1: Set initial control u0, λ0 ∈ [λmin, λmax], stopping tolerances εJ , ε∇ > 0, max spg ∈ N
2: Project u0 = PΩc (u0)
3: for k = 0 to max spg do
4: Save Jold := J (y(uk), uk)
5: if ‖PΩc (uk −∇Ĵ (uk))− uk‖∞ ≤ ε∇ then
6: return
7: end if
8: Compute search direction, sk = PΩc (uk − λk∇Ĵ (uk))− uk

9: Perform non-monotone line search as described in [8, Algorithm 2.2], obtain step length α∗k
10: Update uk+1 = uk + α∗ksk

11: if |Jold − J (y(uk+1), uk+1)| < εJ then
12: return
13: end if
14: Set pk = uk+1 − uk

15: Set gk = ∇Ĵ (uk+1)−∇Ĵ (uk)
16: if pT

k gk ≤ 0 then
17: Set λk+1 := λmax

18: else
19: Set λk+1 := max{λmin,min{pT

k pk/pT
k gk , λmax}}

20: end if
21: end for

3.3 Application: Optimal control of Burgers’ equation

In order to apply the optimization algorithms described in the previous sections, we need
to specify a cost function J as well as the nonlinear PDE c that is constraining the
optimization problem (3.3). In this section, we will consider a test problem that has been
widely used in the literature and can, thus, be considered as a standard test problem, cf.
[23, 29]. We want to minimize the following cost functional,

min
u

1
2

∫ T

0

∫ L

0
[y(t, x)− z(t, x)]2 + ωu2(t, x) dx dt, (3.32)

where y is a solution the one-dimensional, unsteady Burgers’ equation with homogeneous
Dirichlet boundary conditions and initial condition y0(x),

yt +
(1

2y2 − νyx

)
x

= f + u, (x, t) ∈ (0,L)× (0,T),

y(t, 0) = y(t,L) = 0, t ∈ (0,T),

y(0, x) = y0(x), x ∈ (0,L).

(3.33)

In (3.32), the function z is a given function defined on Ω = [0,L]× [0,T]. We consider z
to be the desired state of the optimization problem (3.32)-(3.33) because if we are able to
control the solution of Burgers’ equation in such a way that the difference between y and
z is small on the whole domain Ω, then the value of the objective function (3.32) is small.

3.3. APPLICATION: OPTIMAL CONTROL OF BURGERS’ EQUATION 31

The parameter ω ∈ R+ is called the control penalty. Usually, ω is chosen to be small such
that a relatively large control u is allowed that drives the state y into the desired state z.
The control itself appears on the right-hand side of Burgers’ equation and can be chosen
arbitrarily as long as the initial and boundary conditions on y are not violated.

0

0.5

1

0
0.5

1
0

0.5

1

1.5

t

uncontrolled state

x

y(
t,x

)

0

0.5

1

0
0.5

1
0

0.5

1

1.5

t

desired state

x
z(

t,x
)

Figure 3.1: Uncontrolled and desired state for ν = 0.01.

We now present a discretization of the cost functional (3.32) as well as Burgers’ equation
(3.33) which is again in conservative form as already seen in Section 2.3. Therefore, we
make the ansatz that the control u can be approximated in a finite element way as the
superposition of piecewise linear test functions φj as introduced in Appendix A.1. This
approach can be written as,

u(t, x) ≈
N∑

j=1
uj(t)φj(x), (3.34)

where uj are the respective coefficients of φj that only depend on time, see for example
[17]. Note, that this ansatz also implies that the control is zero at the boundaries x = 0
and x = L and, therefore, it does not change the behavior of the solution y at those points.
Furthermore, we will choose u(0, x) = 0 as initial control which, again, does not affect the
initial condition on y.

In order to discretize (3.32), the outermost time integral has been approximated by a
simple sum using a constant step size δt for the discretization of the time interval [0,T].
We therefore obtain all time-dependent quantities at discrete time instances ti , where
t0 = 0 and tNt = T . Recall, that in Appendix A.1 the state has been approximated in
the following way, y(t, x) ≈∑N

j=1 yj(t)φj(x), a fully discrete version of the cost functional
(3.32) is given by,

min
u0,...,uNt

J (y0, ...,yNt ,u0, ...,uNt) = min
u0,...,uNt

Nt∑
i=0

δt
(1

2yT
i Myi − zTyi + ω

2 uT
i Mui

)
,

(3.35)

32 CHAPTER 3. OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

where the vector-valued quantities

yi =


y1(ti)

...
yN (ti)

 ∈ RN , ui =


u1(ti)

...
uN (ti)

 ∈ RN , for ti ∈ [0,T]

are introduced and M is the mass matrix as defined in Appendix A.1. Note, that in (3.35)
the constant and positive term

1
2

∫ T

0

∫ L

0
z2(t, x) dx dt

has been neglected since it does not influence the position of the minimum with respect to
u. This can lead to a negative value of the discrete objective function even though (3.32)
is positive. Furthermore, we assume that the desired state z does not depend on time.
The vector z tested against the hat functions φj is therefore given by,

z =


∫ L

0 z(x)φ1(x)dx
...∫ L

0 z(x)φN (x)dx

 ≈ h


z(x1)

...
z(xN)

 . (3.36)

The discretization of Burgers’ equation (3.33) with the control on the right-hand side has
been obtained by a finite element approach in space and an implicit Euler method in
time as described in Appendix A.1 and Appendix A.2, respectively. The resulting discrete
constraint in the form c(y, u) = 0 is a vector-valued function with the components equal
to,

ci+1(yi ,yi+1,ui+1) ≡ 1
δt Myi+1 −

1
δt Myi + 1

2By2
i+1 + νCyi+1 − f −Mui+1 = 0, (3.37)

where i = 0, ...,Nt − 1 and the constraint is given by c := [c1, ..., cNt]T which is a function
of the state and the control at all discrete time instances.

Note, that the only nonlinearity that remains is derived from the discretization of the
convective term of Burgers’ equation. We will denote this nonlinearity by,

N (yi+1) := 1
2By2

i+1, (3.38)

and point out the special treatment of the nonlinearity in the following application of the
Newton-type method using adjoint techniques for the derivative computation as intro-
duced in Section 3.1.

Therefore, we first note that after discretization in space and time, the cost function
(3.35) together with the constraint (3.37) fit the framework of (3.3). We can, thus, build
the fully discretized Lagrangian function according to the definition (3.9). The discrete

3.3. APPLICATION: OPTIMAL CONTROL OF BURGERS’ EQUATION 33

Lagrangian of the full-order model is given by,

L(y0, ...,yNt ,u0, ...,uNt ,λ1, ...,λNt)

=
Nt∑

i=0
δt
(1

2yT
i Myi − zTyi + ω

2 uT
i Mui

)

+
Nt−1∑
i=0

λT
i+1

(1
δt Myi+1 −

1
δt Myi + 1

2By2
i+1 + νCyi+1 − f −Mui+1

)
, (3.39)

where the adjoint variable λi at each time instance is a vector of dimension N .

In all our numerical test calculations, adjoints were used for the computation of gradi-
ents and Hessian-vector products. Therefore, we will next present how the adjoint Algo-
rithms 3.2 and 3.3 have been applied to the discretized Burgers’ equation (3.35)-(3.37).

3.3.1 Numerical results for a Newton-type method using adjoints

We want to apply the optimization Algorithm 3.1 in order to solve (3.35) for u0, ...,uNt ,
when y0, ...,yNt is the solution of (3.37). Therefore, we will need the corresponding
Lagrangian function (3.39) as well as the gradient and the Hessian-times-vector product
as described in the algorithms 3.2 and 3.3, respectively. We will concentrate on the
solution of the two adjoint equations and refer to Appendix A for the numerical solution
of Burgers’ equation.

In the adjoint Algorithm 3.2 that computes the gradient of the cost functional (3.35), we
mostly need to compute partial derivatives of the constraint (3.37) and the cost functional
itself with respect to the control u and the state variable y. Since both the constraint
and the cost functional depend on the control and the state at all time instances, the
respective variables we need to consider are of the size N ·Nt ,

u :=


u0
...

uNt

 ∈ R(N ·Nt)×1, y :=


y0
...

yNt

 ∈ R(N ·Nt)×1.

Therefore, at every outer iteration of the optimization loop, we first need to solve Burgers’
equation on the whole time interval. In Algorithm 3.6, we summarize the application of
Algorithm 3.2 to the full-order discrete optimal control problem with Burgers’ equation
as an implicit constraint. Thereby, the adjoint equation (3.13) reduces to an ordinary
differential equation in the adjoint variable. Note, that we first need to solve the terminal
condition (3.40a) for λNt and then solve the set of equations (3.40b) backwards in time.
Given the solution of (3.40a)-(3.40b), the gradient of the cost function with respect to the
control u can be obtained according to (3.15).

34 CHAPTER 3. OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

Algorithm 3.6 Algorithm 3.2 applied to the full-order discrete Burgers’ equation
1: From the initial condition y0 and the current control u1, ...,uNt , solve Burgers’ equation for

y1, ...,yNt as described in Appendix A
2: The adjoint equation (3.13) reads:(

1
δt M +N ′(yNt) + νC

)T
λNt = −δt(MyNt − z) (3.40a)(

1
δt M +N ′(yi) + νC

)T
λi = −(− 1

δt M)Tλi+1 − δt(Myi − z), i = Nt − 1, ..., 1 (3.40b)

3: The gradient is computed according to formula (3.15):

∇uĴ (u0, ...,uNt) =


δtωMu0

δtωMu1 −M Tλ1
...

δtωMuNt −M TλNt

 (3.41)

In (3.40a) and (3.40b) it is necessary to compute the first derivative of the nonlinear
term (3.38). For an arbitrary vector y = [y1, ..., yN]T and a matrix B ∈ RN×N , the first
derivative of the nonlinear term N (·) is given by,

N ′(y) = d
dy

(1
2By2

)
=


B1,1y1 . . . B1,N yN

B2,1y1 . . . B2,N yN
...

...
BN ,1y1 . . . BN ,N yN

 ∈ RN×N ,

which is again an N ×N matrix.
In order to solve the Newton equation (3.6) we also need to compute the Hessian

∇2Ĵ (u). Since this is a matrix of dimension N ·Nt×N ·Nt , we solve the linear system (3.6)
with the truncated CG method where we only need to compute the product of the Hessian
times a vector and never need to store the whole Hessian matrix, see Algorithm B.1. In
Algorithm 3.7, we present the application of the general Hessian-times-vector computation
as derived in Section 3.1.2 to the optimization of Burgers’ equation. Therefore, we define
the arbitrary vector v := (vT

0 , ...,vT
Nt

)T and derive the equations (3.42a)-(3.42b) and
(3.43a)-(3.43b) for the auxiliary variables w and p according to the respective general
formulas (3.23) and (3.24). It is important to note that the initial condition (3.42a) and
the terminal condition (3.43a) follow directly from the general equations (3.23) and (3.24)
when the respective partial derivative is computed.

3.3. APPLICATION: OPTIMAL CONTROL OF BURGERS’ EQUATION 35

Algorithm 3.7 Algorithm 3.3 applied to the full-order discrete Burgers’ equation
1: We assume that we have already computed y0, ...,yNt ,u0, ...,uNt ,λ1, ...,λNt in Algorithm 3.6
2: Equation (3.23) reads:

w0 = 0 (3.42a)(
1
δt M +N ′(yi+1) + νC

)
wi+1 = −(− 1

δt M)wi −Mvi+1, i = 0, ...,Nt − 1 (3.42b)

3: Equation (3.24) reads:(
1
δt M +N ′(yNt) + νC

)T
pNt = δtMwNt + diag(λT

Nt b1, ...,λ
T
Nt bN)wNt (3.43a)(

1
δt M +N ′(yi) + νC

)T
pi = −(− 1

δt M)Tpi+1 + δtMwi

+ diag(λT
i b1, ...,λ

T
i bN)wi , i = Nt − 1, ..., 1 (3.43b)

4: The Hessian times a vector v is computed according to formula (3.20):

∇2Ĵ (u0, ...,uNt) · v =


δtωMv0

−M Tp1 + δtωMv1
...

−M TpNt + δtωMvNt

 (3.44)

Note that in (3.43a)-(3.43b) as well as in (3.44) it is necessary to compute second
partial derivatives of the Lagrangian function. Therefore, we first note that due to the
definition of the Lagrangian, mixed second order derivatives vanish. Furthermore, we
present the analytic computation of the second partial derivative of the quantity λTN (y)
with respect to the state variable y,

d2

dy2

(
λTN (y)

)
w = d2

dy2

(
λT (1

2By2)
)

w = d2

dy2

1
2

N∑
k=1

λk

N∑
j=1

Bk,jy2
j

w

= d
dy


∑N

k=1 λkBk,1y1
...∑N

k=1 λkBk,N yN

w =


∑N

k=1 λkBk,1
. . . ∑N

k=1 λkBk,N

w

= diag(λT b1, ...,λ
T bN)w,

where λ = (λ1, ..., λN)T , y = (y1, .., yN)T ,and b1, ..., bN are the columns of the matrix B
such that B = (b1|...|bN).

Figures 3.2 and 3.3 show numerical results of Algorithm 3.1 applied to problem (3.35)
with implicit constraint (3.37). In the considered setting, we chose ν = 0.01 in Burgers’
equation, ω = 0.005 for the control penalty, and N = Nt = 80 grid points in time
and space. In order to be able to perform the optimization Algorithm 3.1 using Armijo

36 CHAPTER 3. OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

line search as described in Algorithm B.2 and the gradient and Hessian-vector product
computation in Algorithms 3.6 and 3.7, respectively, we need to specify some settings
which have been summarized in Table 3.1. Also the Newton iteration for the numerical
solution of Burgers’ equation requires to set some tolerances.

εJ ε∇ εα αmin ηk εNewton max newton

10e-8 10e-9 10e-4 10e-8 10e-2 10e-3 20

Table 3.1: Choice of parameters for the numerical results in Figure 3.2 and 3.3.

The outer optimization loop of algorithm 3.1 stops when either the value of the objective
function does not change anymore (εJ in Algorithm 3.1) or the zero-gradient condition
is fulfilled up to a certain precision (ε∇ in Algorithm 3.1). The tolerance of the Armijo
line search is set by εα and a minimum step length is guaranteed by αmin , see Algorithm
B.2. The truncated CG-algorithm B.1 is terminated by the choice of ηk , and εNewton

and max newton are, respectively, the tolerance and the maximum number of iterations of
Newton’s method as described in Algorithm A.1.

From the numerical results in Figure 3.2, we see that the state variable y converges to
the desired state z as the number of optimization iterations k increases. For the presented
setting, after 6 iterations a state has been reached such that the value of the objective
function (3.35) does not decrease any further than 0.024.

0

1

0

1
−0,5

1

1.5

t

x

y(
t,x

)

(a) k = 0 (uncontrolled)

0

1

0

1
−0,5

1

1,5

t

x

y(
t,x

)

(b) k = 1

0

1

0

1
−0,5

1

1,5

t

x

y(
t,x

)

(c) k = 2

0

1

0

1
−0,5

1

1,5

t

x

y(
t,x

)

(d) k = 3

0

1

0

1
−0.5

1

1.5

t

x

y(
t,x

)

(e) k = 4

0

1

0

1
−0.5

1

1.5

t

x

y(
t,x

)

(f) k = 5

Figure 3.2: The state y at different stages k of the optimization iteration.

In Figure 3.3, we present the control that corresponds to the states presented before.
After convergence, we see in the last plot of Figure 3.3 the desired optimal control u∗ that
drives the solution to Burgers’ equation into the desired state z, i.e. minimizes the cost
function.

3.3. APPLICATION: OPTIMAL CONTROL OF BURGERS’ EQUATION 37

0

1

0

1
−6

0

7

u(
t,x

)

x

t

(a) k = 0 (initial)

0

1

0

1
−6

0

7

t

x

u(
t,x

)

(b) k = 1

0

1

0

1
−6

0

7

t

x

u(
t,x

)

(c) k = 2

0

1

0

1
−6

0

7

t

x

u(
t,x

)

(d) k = 3

0

1

0

1
−6

0

7

t

x

u(
t,x

)

(e) k = 4

0

1

0

1
−6

0

7

t

x

u(
t,x

)

(f) k = 5

Figure 3.3: The control u at different stages k of the optimization iteration.

A second numerical test using the same parameters as in Table 3.1 has been performed
in order to show the dependence of the optimization algorithm on the control penalty ω.
From (3.32) we see that the smaller we choose ω the more we put emphasis on driving the
state y into the desired state and allow a large control.

0

1

0

1
0

1

t

ω = 0.05

x

y(
t,x

)

0

1

0

1
0

1

t

ω = 0.005

x

y(
t,x

)

0

1

0

1
0

1

t

ω = 0.0005

x

y(
t,x

)

0

1

0

1
−3

0

2

t

ω = 0.05

x

u(
t,x

)

0

1

0

1
−6

0

7

t

ω = 0.005

x

u(
t,x

)

0

1

0

1
−15

0

20

t

ω = 0.0005

x

u(
t,x

)

Figure 3.4: State y and corresponding optimal control u after convergence for different control
parameters ω = {0.05, 0.005, 0.0005} .

In Figure 3.4 we see the final state of the optimization for different values of ω as well
as the corresponding optimal control. For the smallest value of ω, we see that the desired
state is almost perfectly fitted and, therefore, the control has large values which leads to

38 CHAPTER 3. OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

a large contribution in the cost function but has been compensated by the small value of
ω.

3.3.2 Numerical results for gradient-based optimization methods

In this section, we present results corresponding to the BFGS and SPG methods as de-
scribed in Section 3.2.1 and 3.2.2, respectively. In our tests, we used publicly available
Matlab implementations that require the cost function and the gradient as input as well
as some tolerances and settings. With formula (3.35) and Algorithm 3.6 we have already
given a fully discretized version of the cost function and its gradient and, therefore, the
application of both first-order optimization algorithms in straightforward. Here, we only
present numerical results of the SPG method because this method allows us to impose
bounds on the control u at all time instance. Accuracy and performance results for all ap-
proaches including the BFGS method are presented in Section 4.4. One can imagine that
bounds on the control arise in many engineering application from physical constraints, cf.
[43].

In Figure 3.5, we present the converged solution of the SPG method when the control
is bounded between −2 and 2. Clearly, this affects the corresponding optimal state of
Burgers’ solution and we can see that the desired state can not be reached with the same
accuracy as in the previous examples.

0

0.5

1

00.51
0

0.5

1

1.5

y(t,x)

0

0.5

1

00.51
0

0.5

1

1.5

z(t,x)

0

0.5

1

00.51
−1

0

1

2

x 10
−3

λ(t,x)

0

0.5

1

00.51

−2

0

2

u(t,x)

Figure 3.5: Optimal state (upper left), desired state (upper right), adjoint state (lower left) and
optimal control (lower right) for a bounded control −2 ≤ u ≤ 2 using the SPG Algorithm 3.5.

Chapter 4

Implementation and analysis of a
POD-DEIM reduced model for the optimal
control of Burgers’ equation

In [29], the authors used a POD-reduced model for the optimal control of Burgers’ equa-
tion. In this Section, we extend this approach by applying model order reduction using
POD-DEIM as described in Section 2 to an optimal control problem as described in Sec-
tion 3 and compare the POD-DEIM reduced model to the POD model in terms of com-
putational cost and accuracy. The reduced optimal control problem is in the implicitly-
constrained form,

min
u
J̃ (ỹ(u), u),

with c̃(ỹ, u) = 0,
(4.1)

where we use a tilde to indicate that the considered quantity is of lower dimension. In
(4.1), the constraining nonlinear PDE c̃(ỹ, u) = 0 is solved for the reduced state variable
ỹ(u). Since the evaluation of the cost function J̃ requires the computation of ỹ first, this
approach also leads to a faster evaluation of the cost function due to the lower dimension
of the state variable. We will refer to the solution of (4.1) as the optimal control of the
reduced system. It is important to note, that even though this optimal control is derived
from the reduced system, we denote it without tilde in order to stress that the control
is still of the large dimension of the full-order model. This is a natural approach at this
point because u can be seen as an input variable because the state ỹ(u) directly depends
on the control. A dimension reduction of the control u is not considered at this point.
Similarly to the previous section, we denote by ˆ̃J (u) := J̃ (ỹ(u), u) the cost function as a
function of the control only.

39

40
CHAPTER 4. IMPLEMENTATION AND ANALYSIS OF A POD-DEIM REDUCED MODEL FOR

THE OPTIMAL CONTROL OF BURGERS’ EQUATION

4.1 A POD-DEIM reduced model for optimal control of Burgers’ equation

In Section 3.3, we introduced the optimal control problem (3.32)-(3.33). We will now
derive a POD-DEIM reduced model of the corresponding discrete optimization problem
(3.35)-(3.37). Therefore, we first consider the discretized objective function (3.35) and
recall that the reduced state variable has been derived in the following way,

y(t) ≈ Φ`ỹ(t),

where the columns of the matrix Φ` are the POD basis. When we plug in this approxi-
mation into (3.35), we obtain the reduced objective function,

min
u0,...,uNt

J̃ (ỹ0, ..., ỹNt ,u0, ...,uNt) = min
u1,...,uNt

Nt∑
i=0

δt
(1

2 ỹT
i ỹi − z̃T ỹi + ω

2 uT
i Mui

)
, (4.2)

where the mass matrix in the first term vanishes due to the M-orthogonality of Φ` and
the reduced desired state z̃ is given by,

z̃ := ΦT
` z ∈ R`. (4.3)

Note that (4.3) can be pre-computed once the POD basis is obtained because the desired
state of the full-order model is a given function, see (3.36). We further note that problem
(4.2) is still formulated in terms of the full-dimensional control ui at the time instances
ti . In Section 4.3, we will show one way in which a lower-dimensional control can lead to
a reduced model that is completely independent of the full-order dimension N .

In order to obtain a POD-DEIM reduced model for the constraining Burgers’ equation,
we refer to Section 3.3 and apply the POD-DEIM projection to (3.37). The fully discretized
reduced constraint is, thus, given by

c̃i(ỹi , ỹi+1,ui+1) ≡ 1
δt ỹi+1 −

1
δt ỹi + 1

2 B̃(F̃ ỹi+1)2 + νC̃ ỹi+1 − f̃ − M̃ui+1 = 0, (4.4)

where i = 0, ...,Nt − 1 and a dimension reduction for the right-hand side as well as the
projected mass matrix has been obtained,

f̃ := ΦT
` f ∈ R`, (4.5)

M̃ := ΦT
` M ∈ R`×N . (4.6)

Note that M̃ still depends on N and the matrices B̃, C̃ , F̃ have been defined in (2.26),
(2.27), (2.28), respectively.

Furthermore, we note that the nonlinear term in (4.4) has to be considered as a function
of the reduced variable ỹ and has the slightly more complicated form,

Ñ (ỹi+1) := 1
2 B̃(F̃ ỹi+1)2. (4.7)

4.2. A NEWTON-TYPE METHOD FOR THE POD-DEIM REDUCED MODEL 41

The Lagrangian function of the reduced model can be obtained directly from (4.2) and
(4.4) and is given by,

L̃(ỹ0, ..., ỹNt ,u0, ...,uNt , λ̃1, ..., λ̃Nt)

=
Nt∑

i=0
δt
(1

2 ỹT
i ỹi − z̃T ỹi + ω

2 uT
i Mui

)

+
Nt−1∑
i=0

λ̃
T
i+1

(1
δt ỹi+1 −

1
δt ỹi + 1

2 B̃(F̃ ỹi+1)2 + νC̃ ỹi+1 − f̃ − M̃ui+1

)
(4.8)

In (4.8), we see that the adjoint variable λ̃i ∈ R` is of the same dimension ` as the reduced
state variable. This gives a good motivation for a faster solution of the adjoint equations
(3.13) when applied to the POD-DEIM reduced model.

4.2 A Newton-type method for the POD-DEIM reduced model

In Section 3.3.1, we have already seen that the application of the adjoints for derivative
computation according to Algorithm (3.2) and (3.3) is straightforward but the derivation
of partial derivatives of the nonlinear term is still involved when applied to a concrete
problem. In Algorithm 4.1, we present the computation of the gradient of the reduced
objective function which follows from the application of Algorithm 3.2 to the reduced
model (4.2)-(4.4).

Algorithm 4.1 Algorithm 3.2 applied to the reduced Burgers’ model
1: From the initial condition ỹ0 and the current control u0, ...,uNt , solve the reduced Burgers’

equation for ỹ1, ..., ỹNt according to 4.4
2: The adjoint equation (3.13) reads:(

1
δt I` + Ñ ′(ỹNt) + νC̃

)T
λ̃Nt = −δt(ỹNt − z̃) (4.9a)(

1
δt I` + Ñ ′(ỹi) + νC̃

)T
λ̃i = −(− 1

δt I`)T λ̃i+1 − δt(ỹi − z̃), i = Nt − 1, ..., 1 (4.9b)

3: The gradient is computed according to formula (3.15):

∇ ˆ̃J (u0, ...,uNt) =


δtωMu0

δtωMu1 − M̃ T λ̃1
...

δtωMuNt − M̃ T λ̃Nt

 (4.10)

Because of the small dimension of the adjoint variable λ̃i , we note that the solution of
the linear systems (4.9a)-(4.9b) can be obtained much faster than in the full-order case.
In (4.9a) and (4.9b) and the remainder of the paper, I` denotes the identity matrix of
dimensions `× `. It is important to stress that the Jacobian of the nonlinearity (4.7) has

42
CHAPTER 4. IMPLEMENTATION AND ANALYSIS OF A POD-DEIM REDUCED MODEL FOR

THE OPTIMAL CONTROL OF BURGERS’ EQUATION

to be computed in terms of the reduced variable ỹ and is, hence, of dimension `× ` as the
the following computation shows:

Ñ ′(ỹ) = d
dỹ

(1
2 B̃(F̃ ỹ)2

)
=


B̃1,1 . . . B̃1,m

...
...

B̃`,1 . . . B̃`,m

 ·

〈ỹ, F̃1〉F̃1,1 . . . 〈ỹ, F̃1〉F̃1,`

...
...

〈ỹ, F̃m〉F̃m,1 . . . 〈ỹ.F̃m〉F̃m,`

 .
(4.11)

In (4.11), we denoted by F̃i the i-th row of the matrix F̃ and B̃i,j , F̃i,j denotes the entry
of the respective matrix at position i, j. Here, 〈·, ·〉 stands for the standard scalar product
in R`. Note that because of the full dimension of ui , the gradient in (4.10) is still of
dimension N ·Nt × 1. Algorithm 4.1 has also been used for the gradient computation that
is required for the first-order optimization methods SPG and BFGS.

We next present the efficient computation of the Hessian-times-vector product ∇2 ˆ̃J ·v
using adjoints. Since the Hessian with respect to u is of dimension N · Nt × N · Nt , the
corresponding vector used in Algorithm 4.2 is of the following form, v := (v0, ...,vNt)T ∈
R(N ·Nt)×1.

Algorithm 4.2 Algorithm 3.3 applied to the reduced Burgers’ model
1: We assume that we have already computed ỹ0, ..., ỹNt ,u0, ...,uNt , λ̃1, ..., λ̃Nt in Algorithm 4.1
2: Equation (3.23) reads:

w̃0 = 0 (4.12a)(
1
δt I` + Ñ ′(ỹi+1) + νC̃

)
w̃i+1 = −(− 1

δt I`)w̃i − M̃vi+1, i = 0, ...,Nt − 1 (4.12b)

3: Equation (3.24) reads:(
1
δt I` + Ñ ′(ỹNt) + νC̃

)T
p̃Nt = δtI`w̃Nt +

(
λ̃

T
Nt Ñ (ỹNt)

)′′
w̃Nt (4.13a)(

1
δt I` + Ñ ′(ỹi) + νC̃

)T
p̃i = −(− 1

δt I`)T p̃i+1 + δtI`w̃i +
(

λ̃
T
i Ñ (ỹi)

)′′
w̃i , i = Nt − 1, ..., 1

(4.13b)

4: The Hessian times a vector v is computed according to formula (3.20):

∇2 ˆ̃J (u0, ...,uNt)v =


δtωMv0

−M̃ T p̃1 + δtωMv1
...

−M̃ T p̃Nt + δtωMvNt

 (4.14)

4.2. A NEWTON-TYPE METHOD FOR THE POD-DEIM REDUCED MODEL 43

Note that the second partial derivative of the nonlinear term λ̃
T Ñ (ỹ) with respect to

the reduced variable ỹ in step 3 of the above algorithm is given by:

d2

dỹ2

(
λ̃

T Ñ (ỹ)
)

w̃ = d2

dỹ2

(
λ̃

T (1
2 B̃(F̃ ỹ)2)

)
w̃ = d2

dỹ2

∑̀
k=1

λk
1
2

m∑
j=1

B̃k,j

(∑̀
i=1

F̃j,i ỹi

)2 w̃

= d
dỹ


∑`

k=1 λk
∑m

j=1 B̃k,j
∑`

i=1 F̃j,i ỹi · F̃j,1
...∑`

k=1 λk
∑m

j=1 B̃k,j
∑`

i=1 F̃j,i ỹi · F̃j,`

 w̃

=


∑`

k=1 λk
∑m

j=1 B̃k,jF̃j,1F̃j,1 . . .
∑`

k=1 λk
∑m

j=1 B̃k,jF̃j,`F̃j,1
...

...∑`
k=1 λk

∑m
j=1 B̃k,jF̃j,1F̃j,` . . .

∑`
k=1 λk

∑m
j=1 B̃k,jF̃j,`F̃j,`


︸ ︷︷ ︸

∈R`×`

w̃

Due to the dimensions of the reduced variables, it is natural that the above matrix-times-
vector product only depends on the dimension `. The matrix is not constant in time
because the adjoint variable depends on time and can, thus, not be pre-computed. An
efficient implementation is therefore necessary in order to obtain a computational speedup
if `� N .

Algorithm 4.3 gives an overview of the optimization algorithm that has been developed
for the optimal control of the POD-DEIM reduced model of Burgers’ equation. Algorithm
4.3 is an iterative procedure to update the reduced model aiming to improve the approxi-
mation to the full-order model. The procedure is as follows: In order to obtain snapshots,
it is necessary to solve the full-order model corresponding to an initial control once. From
snapshots of the full-order solution, we can derive the reduced model and solve the reduced
optimization problem for an optimal control. The reduced model can be improved in an
iterative process by obtaining new snapshots of the state corresponding to the current
optimal control. Then, a new POD-DEIM model is derived from the new snapshots and
the same optimization algorithm is applied to the improved reduced model. This can be
repeated until a certain stopping criterion is satisfied. In Algorithm 4.3, we improve the
reduced model as long as the obtained optimal state is close enough to the desired state
z measured in the L2-norm. Another approach for stopping could be that the reduced
objective function reaches the value of the objective function of the full-order model eval-
uated at the optimal state. This, however, is only possible if the full-order optimal control
has already been solved which we want to avoid in our implementation.

44
CHAPTER 4. IMPLEMENTATION AND ANALYSIS OF A POD-DEIM REDUCED MODEL FOR

THE OPTIMAL CONTROL OF BURGERS’ EQUATION

Algorithm 4.3 Optimal control: Iterative improvement of the reduced model
1: Set initial control u(0) = 0, and K = 0, εz ∈ R+, max iter ∈ N
2: Solve the full-order Burgers’ equation c(y(0), u(0)) for the uncontrolled state y(0) via (3.37)
3: Choose POD dimension ` and DEIM-dimension m
4: while ‖y(K) − z‖L2([0,L]×[0,T]) > εz and K <max iter do
5: Obtain the POD-DEIM reduced model from snapshots of y(K), i.e. compute Φ` via (2.18)

and P via Algorithm 2.1
6: Calculate reduced optimal control, u(K+1) = argminu J̃ (ỹ(u), u) by solving the reduced

optimization problem (4.2) with implicit constraint (4.4). Choose one of the optimization
algorithms 3.1, 3.4 or 3.5.

7: Solve the reduced Burgers’ equation c̃(ỹ(K+1), u(K+1)) = 0 for ỹ(K+1) via (4.4)
8: Expand y(K+1) = Φ`ỹ(K+1)

9: K = K + 1
10: end while

In Figure 4.1, we show numerical results for the optimal control of Burgers’ equation
using a POD-DEIM reduced model of different dimensions ` and m and using the Newton-
type method of Algorithm 3.1 for solving the optimization problem. We see that due to
the low-dimensional state variable, the desired state is not reached with the same accuracy
as in the full-order case. This leads to a larger optimal value of the objective function
(4.2) as the results in Section 4.4 will show.

0

1

0

1
−0.5

0

1

t

ν = 0.01

x

Φ
ℓ
y
(t
)

(a) ` = m = 7

0

1

0

1
−0.5

0

1

t

ν = 0.01

x

Φ
ℓ
y
(t
)

(b) ` = m = 15

0

1

0

1
−9

0

5

t

ν = 0.01

x

u(
t,x

)

(c) ` = m = 7

0

1

0

1
−9

0

5

t

ν = 0.01

x

u(
t,x

)

(d) ` = m = 15

Figure 4.1: Optimal control of the POD-DEIM reduced Burgers’ model using different dimensions.

4.3. LOW-DIMENSIONAL CONTROL USING INDIVIDUAL CONTROL POINTS 45

4.3 Low-dimensional control using individual control points

In order to overcome the dependence of the control on the dimension of the full-order
model, we will restrict the control to certain discrete control points. In Figure 4.2, we
have indicated that we allow to control the system at only three different points in [0,L].
This approach requires, of course, some physical inside of the problem in the sense that
we need to know at which points it is important to control the state.

Figure 4.2: Discretization of the interval [0,L] indicating only 3 discrete positions for control.

We can model this approach by writing the control in the following way:

u(t) = Ψnc ũ(t), with ũ(t) ∈ Rnc , (4.15)

where ũ(t) is low-dimensional and contains only non-zero values of the control at the
nc considered points. The matrix Ψ indicates which entries of the control we want to
consider. For the case in Figure 4.2 with nc = 3, we would have:

Ψ3 =



1 0 0
...

0 1 0
0 0 1

...


∈ RN×3.

Note that this decomposition corresponds to an ansatz:

u(t, x) ≈
∑
j∈Ic

uj(t)φj(x),

with an index set Ic containing nc indices of the control points. This way, the mass
matrix for the control can be derived in a straightforward way but the approach of (4.15)
shows the gain in dimension reduction better: When we plug in (4.15) into the discretized
objective function (4.2), we obtain:

min
ũ0,...,ũNt

J̃ (ỹ0, ..., ỹNt , ũ0, ..., ũNt) = min
ũ1,...,ũNt

Nt∑
i=0

δt

1
2 ỹT

i ỹi − z̃T ỹi + ω

2 ũT
i ΨT MΨ︸ ︷︷ ︸

pre-compute
ũi

 ,
(4.16)

which does not depend on the full-order dimension N at all because the matrix ΨT MΨ ∈
Rnc×nc . Note also that this matrix can be pre-computed. In the same way, we have for

46
CHAPTER 4. IMPLEMENTATION AND ANALYSIS OF A POD-DEIM REDUCED MODEL FOR

THE OPTIMAL CONTROL OF BURGERS’ EQUATION

the discretized reduced Burgers’ equation (4.4) the following:

c̃i(ỹi , ỹi+1, ũi+1) ≡ 1
δt ỹi+1 −

1
δt ỹi + 1

2 B̃(F̃ ỹi+1)2 + νC̃ ỹi+1 − f̃ − ΦT
` MΨ︸ ︷︷ ︸

pre-compute

ũi+1 = 0,

(4.17)

where i = 0, ...,Nt − 1 and ΦT
` MΨ ∈ R`×nc .

In Figure 4.3, we show the numerical result for nc = 3. We see that even a control
at only three different control points leads to a reasonable approximation to the desired
state. We also present the corresponding control that drives the solution to the POD-
DEIM reduced Burgers’ equation into the desired state.

0

1

0

1

0

1

t

ν = 0.01

x

Φ
1
1
ỹ
(t
)

0

1

0

1
−30

0

15

t

ν = 0.01

x

Ψ
3
ũ
(t
)

Figure 4.3: Optimal control (right) and corresponding state (left) for ` = m = 11 and nc = 3
control points.

4.4 Performance and error analysis

The main goal of this thesis work is to evaluate the performance of POD-DEIM when
applied to optimal control of Burgers’ equation. In order to compare the results of the
optimization using a POD-DEIM reduced model with the optimization based on a re-
duced model obtained from a pure POD reduction as suggested in [29], it is important
to specify identical stopping criteria and tolerances for the respective numerical optimiza-
tion algorithm. In this section, we present numerical results for three different viscosity
parameters, ν = {0.01, 0.001, 0.0001}, and for the three different optimization algorithms
Newton-type, BFGS and SPG as presented in Section 3.1, 3.2.1 and 3.2.2, respectively.
Since all three optimization algorithms are iterative methods, we are able to define a
stopping of the optimization when either the change in the objective function is smaller
than the tolerance εJ or the zero-gradient condition is fulfilled upto a numeric tolerance
specified by ε∇. For the presented results of this section, we used εJ = 10e-8 and ε∇ =
10e-9 in the respective Algorithms 3.1, 3.4 or 3.5. In general, it is difficult to design
a fair comparison between different algorithms. For example, the stopping criterion for
the gradient is implemented differently for the SPG method, see line 5 of Algorithm 3.5.
Therefore, we also used a criterion which is called targeting and which provides compara-
ble results by choosing all parameters in such a way that the final value of the reduced

4.4. PERFORMANCE AND ERROR ANALYSIS 47

objective function and the objective function of the full-order model are close. Moreover,
we have required the error of the optimal state in the relative L2-norm to be small.

In order to compare the optimal control of the POD and the POD-DEIM reduced
Burgers’ model, we are first interested in the accuracy of the optimal state obtained by
the two reduced models in comparison to the full-order optimal control as described in
Section 3.3. Therefore, we choose the viscosity parameter ν = 0.01 which requires a
dimension of N = 80 for the full-order model, cf. Section 3.3. For a comparison of
the optimal state obtained by a POD and POD-DEIM, we choose the DEIM-dimension
constant, m = 15, and increase the POD dimension ` from 3 to 25. In Figure 4.4, we
present the distribution of the error which is defined as the squared difference of the final
state of the full-order optimization and the final state of the respective optimization of
the reduced model,

e(t, x) := [y(t, x)− Φ`ỹ(t)]2.

Figure 4.4 shows the error as a function of time and space for three different POD dimen-
sions, ` = {5, 15, 25}. We see that the error is large where the desired state is not smooth,
i.e. at the boundary of the step function z. Furthermore, the plot in Figure 4.4 shows that
the error decreases as the POD dimension increases. For all three cases considered, the
error is generally larger for the POD-DEIM reduced model but it is always of the same
order of magnitude.

(a) ` = 5 (b) ` = 15 (c) ` = 25

(d) ` = 5 (e) ` = 15 (f) ` = 25

Figure 4.4: Error distribution of the optimal state obtained by the Newton-type method and a
POD and POD-DEIM reduced model.

48
CHAPTER 4. IMPLEMENTATION AND ANALYSIS OF A POD-DEIM REDUCED MODEL FOR

THE OPTIMAL CONTROL OF BURGERS’ EQUATION

In Figure 4.5, we present the error in the two reduced optimal sates with respect to the
full optimal state not as a function of time and space but calculated in the corresponding
L2-norm. Since the POD reduced model only depends on `, we have again chosen a fixed
DEIM-dimension m = 15 in order to compare the error in L2 as a function of `. In Figure
4.5, we see that, as expected, the POD-DEIM error is larger for all considered `. It is also
interesting to note that for ` > m, the error of the POD-DEIM optimal state is dominated
by the DEIM approximation error and does not decrease further whereas the error of the
optimal state obtained from the POD reduced model still decreases.

3 5 7 9 11 13 15 17 19 21 23 25
10

−4

10
−3

10
−2

ℓ

‖
Φ

ℓ
ỹ
−
y
‖
L
2

ν = 0.01

POD
POD−DEIM

Figure 4.5: Comparison of the L2-error of the POD and the POD-DEIM approximation when the
projection dimensions are increased.

The results presented in Figure 4.4 and Figure 4.5 show that the POD-DEIM reduced
optimal control problem (4.2)-(4.4) yields to a comparable optimal solution to a POD-
reduced model and the full-order optimal control problem (3.35)-(3.37). We will next
consider the application of the Newton-type optimization method of Algorithm 3.1 to the
three different models with respect to computational time. Therefore, we have calculated
the optimal solution for three different values of ν in Table 4.1. The measurements reported
in Table 4.1 are:

• N /`/m - The (spatial) dimension of the full-order, POD and POD-DEIM reduced
model, respectively. In the case of POD-DEIM we present both reduced dimensions
as the tuple (`,m)

• topt [s] - This is the time needed for the considered optimization algorithm. In case of
the reduced optimal control presented in Algorithm 4.3, this also includes the time
which is necessary for building the reduced model, i.e. the pre-computation of the
POD basis and DEIM-indices.

• J (y∗, u∗) - The value of the (reduced) objective function after convergence of the
optimization iteration.

• ē - The relative error as defined in (2.29), computed for the optimal state.

• SP - The speedup in computation time.

4.4. PERFORMANCE AND ERROR ANALYSIS 49

ν = 0.01 ν = 0.001 ν = 0.0001
Full POD DEIM Full POD DEIM Full POD DEIM

N /`/m 80 9 (9, 25) 200 11 (11, 25) 800 15 (15, 25)
topt [s] 4.83 4.13 3.22 23.1 6.38 5.25 1,865.8 23.61 18.42
J (y∗, u∗) 0.0241 0.0262 0.0233 0.0206 0.0198 0.0200 0.0202 0.0191 0.0233

ē - 0.0097 0.0141 - 0.0194 0.0192 - 0.0255 0.0238
SP - 1.35 1.9 - 3.7 4.4 - 79.0 101.3

Table 4.1: Results of the Newton-type optimization method 3.1 for ν = {0.01, 0.001, 0.0001}.

The results in Table 4.1 show that for all values of ν, the POD as well as the POD-
DEIM reduced optimal control problem lead to an optimal solution such that the value
of the objective function J (y∗, u∗) is similar. We further note that the optimal state
of the reduced model is a good approximation for the optimal state of the full-order
optimization problem which can be seen by a small relative error, ē ∈ O(10−2), for all
considered settings. The most important conclusion from Table 4.1 is that for all three
values of ν, the speedup of the POD-DEIM reduced model is larger than the speedup of
the POD-reduced model. In the case of ν = 0.0001, the large full-order dimension N that
is required for numerical stability even leads to a computational speedup of ∼ 80 for the
POD-reduced optimization compared to a speedup of more than 100 for the POD-DEIM
reduced optimal control problem.

In the next numerical test we consider the same setting as before but we use the
approach of a low-dimensional control as described in Section 4.3. For the results presented
in Table 4.2, we used nc = 3 control points at the positions as indicated in Figure 4.2. Since
for the time discretization of the interval [0, 1] we needed to choose Nt = 80 equidistant
time-steps, the choice of nc = 3 has the consequence that the optimization in (4.16) can
be formulated in the unknown ũ := [ũ1, ..., ũNt]T which is a vector of dimension 240. In
Table 4.2, we first note that the value of the objective function is higher for all models and
all values of ν compared to Table 4.1. This is expected since we only allow the control to
be different from zero at three discrete positions and, therefore, it is not possible to drive
the solution of Burgers’ equation into the desired state with the same accuracy as before.
At the same time, we see that the computational cost for all presented simulations is much
less than in Table 4.1 due to the lower dimension of the respective optimization problem.
Again, the approximation of the optimal state obtained when using the reduced order
optimization is of good quality as the small relative error indicates, ē ∈ O(10−2). The
speedup obtained by the dimension reduction of POD and POD-DEIM is generally smaller
in this case compared to the previous experiment but, again, we can see an improvement
obtained by the application of DEIM.

50
CHAPTER 4. IMPLEMENTATION AND ANALYSIS OF A POD-DEIM REDUCED MODEL FOR

THE OPTIMAL CONTROL OF BURGERS’ EQUATION

ν = 0.01 ν = 0.001 ν = 0.0001
Full POD DEIM Full POD DEIM Full POD DEIM

N /`/m 80 9 (9, 25) 200 11 (11, 25) 800 15 (15, 25)
topt [s] 3.68 2.41 1.90 5.44 2.6 1.89 117.32 8.17 6.10
J (y∗, u∗) 0.0300 0.0394 0.0396 0.0348 0.0439 0.0371 0.0763 0.0865 0.0893

ē - 0.0132 0.0142 - 0.0127 0.0187 - 0.0204 0.0304
SP - 1.6 1.9 - 2.0 2.9 - 14.4 19.2

Table 4.2: Results of the Newton-type optimization method 3.1 using a low-dimensional control
with nc = 3 and ν = {0.01, 0.001, 0.0001}.

As a last numerical test, we want to compare the second-order Newton-type method
3.1 to the first-order methods BFGS and SPG, as presented in Section 3.2.1 and 3.2.2,
respectively. In our experiments, the same stopping criteria have been used for all three
iterative methods. In Table 4.3, we present the results of the three optimization algorithms
for the optimal control of Burgers’ equation and the respective results for the POD/DEIM
reduced models when the viscosity parameter is ν = 0.0001 and a control is only possible
at nc = 3 control points. We have chosen the smallest ν because for this case we have
previously seen the largest speedup. Table 4.3 shows almost the same speedup for all
three optimization algorithms when compared to the full-order solution. Note that the
results in Table 4.3 show that the value of the objective function was slightly lower for the
full-order model in all three cases which indicates that the reduced models do not reach
entirely the optimal state of the full model.

Newton-type BFGS SPG
Full POD DEIM Full POD DEIM Full POD DEIM

N /`/m 800 15 (15, 25) 800 15 (15, 25) 800 15 (15, 25)
topt [s] 117.32 8.17 6.10 294.90 15.64 14.38 123.00 7.61 16.11
J (y∗, u∗) 0.0763 0.0865 0.0893 0.0840 0.0879 0.0857 0.0763 0.0861 0.0878

ē - 0.0204 0.0304 - 0.0226 0.0247 - 0.0218 0.0355
SP - 14.4 19.2 - 18.3 20.5 - 16.3 7.6

Table 4.3: Results of three different optimization algorithms and ν = 0.0001,nc = 3.

We note in Table 4.3 that the speedup for the POD-DEIM reduced model is small
when the SPG method is applied. This can be explained when taken into account the
number of evaluations of the cost function (4.2) and its gradient in Table 4.4. We see that
in order to converge within the same precision, the SPG method needs 52 evaluations
of the objective function when POD-DEIM has been applied. This analysis explains the
relatively poor speedup of 7.6 for POD-DEIM compared to a speedup of 16.3 of POD.
The much larger number of required function evaluations overtops the speedup of a single
iteration.

4.4. PERFORMANCE AND ERROR ANALYSIS 51

BFGS SPG
Full POD DEIM Full POD DEIM

#J 65 38 40 17 13 52
#∇J 65 38 40 16 12 12

Table 4.4: Number of evaluations of the cost function and the gradient for the first-order methods
in the setting of Table 4.3.

Moreover, the SPG method has been considered for three different values of ν and the
full-dimensional control that has been constrained in the following way, −2 ≤ u ≤ 2. In
Section 3.2.2, we have defined a projector that allows to include this bound constraint
in an easy way. The numerical results presented in Table 4.5 show a larger value of the
objective function at the optimal state compared to the results obtained by the Newton-
type method presented in Table 4.1. This shows that the restriction of the control to be
within a certain range influences the quality of the obtained optimal state. Again, the
performed numerical tests show that the reduced models approximate the optimal state
of the full-order model well since ē ∈ O(10−2). For the smallest value of ν = 0.0001
which corresponds to a full-order dimension of N = 800, we observe a speedup of the
SPG method of 3.6 when POD is used to solve the constraining Burgers’ equation and a
speedup of 8.8 in the case of a model order reduction by POD-DEIM while the value of
the objective function for both reduced models has been almost the same.

ν = 0.01 ν = 0.001 ν = 0.0001
Full POD DEIM Full POD DEIM Full POD DEIM

N /`/m 80 9 (9, 25) 200 11 (11, 25) 800 15 (15, 25)
topt [s] 6.61 4.02 3.77 12.55 6.61 5.99 193.40 53.16 22.05
J (y∗, u∗) 0.0367 0.0399 0.0332 0.0347 0.0397 0.0378 0.0339 0.0357 0.0367

ē - 0.0193 0.0250 - 0.0255 0.0249 - 0.0238 0.0248
SP - 1.6 1.8 - 1.9 2.1 - 3.6 8.8

Table 4.5: Results of the SPG method and a bounded control −2 ≤ u ≤ 2.

Chapter 5

Summary and Future research

5.1 Overview and main results

In this project, we have applied the nonlinear MOR methods POD and DEIM to the opti-
mal control of Burgers’ equation. Therefore, the optimal control problem (3.32)-(3.33) has
been discretized in space using a finite element approach and integrated in time using an
implicit Euler scheme. The resulting discretized equations are an implicitly constrained
optimization problem that has been solved using the three different optimization algo-
rithms Newton-type method, BFGS and SPG. The main theoretical contribution of this
work is the derivation of the adjoints equation in Algorithm 3.2 and Algorithm 3.3and
its application to the full-order and the POD-DEIM reduced Burgers’ model in the Algo-
rithms 3.6-3.7 and the Algorithms 4.1-4.2, respectively. The discretized optimal control
problem for Burgers’ equation has been implemented in Matlab and the three different
optimization algorithms have been tested with the full-order model, the POD-reduced
model and the POD-DEIM-reduced model.

One main goal of this thesis was to apply DEIM to a POD-reduced model of Burgers’
equation and compare the results of both reduced models with respect to accuracy of the
dynamical behavior and computational speedup. The theoretical derivations in Section
2.2 have shown that the POD-DEIM reduced Burgers’ model is completely independent of
the size of the full-order model N whereas in the case of a purely POD-reduced model, the
nonlinear term of Burgers’ equation still depends on N . The numerical tests in Section
2.3.3 have shown that the larger the original dimension N is, the more speedup we obtain
from DEIM. For N = 800 and a viscosity parameter of ν = 0.0001 we have shown that the
speedup of POD-DEIM is about 52 times the full-order model while a POD-reduced model
only leads to a speedup of 16. Further numerical tests have proven the independence of
the POD-DEIM model of N .

In Section 3 and 4, the DEIM method has been used for the optimal control of Burgers’
equation. In this thesis, we have compared the optimal control of Burgers’ equation using

53

54 CHAPTER 5. SUMMARY AND FUTURE RESEARCH

the three different optimization algorithms BFGS, SPG and a Newton-type method. All
of them have been applied to the optimal control of the full-order model as well as a POD
and a POD-DEIM reduced model. Numerical tests have been shown that the optimal state
of the reduced models is close to the optimal state of the full-order model measured in the
L2-norm. At the same time we have seen for ν = 0.0001 and N = 800 that a computational
speedup of more than 100 times for the POD-DEIM reduced optimal control is possible
whereas the POD-reduced model only let to a speedup of ∼ 80. Additionally, the SPG
method has been used to introduce so-called bound constraints on the control of the full-
order and the respective reduced models. Numerical tests in Section 4.4 have shown that
also for this case, the optimization of the POD-DEIM reduced model leads to a significant
speedup and an optimal state that is close to the optimal state of the full-order model.

5.2 Outlook on future research questions

At this point, we would like to present some directions for future research that might build
up on this thesis work.

A priori dimension reduction of the control variable

In Section 4.3, we have derived a POD-DEIM reduced optimal control problem that uses
only a low-dimensional control in order to drive the solution of Burgers’ equation into
the desired state. This has been done by defining discrete control points at which the
control is allowed to be different from zero. Numerical tests in Section 4.4 have shown
that this approach leads to a tremendous reduction in computational time even for the
optimization of the full-order Burgers’ model. It has been shown as well that the choice
of the position of the control points is crucial and requires some physical inside of the
considered optimization problem. Since it is in general not clear which positions are
optimal for the control points, it would be desirable to develop an algorithmic approach
that reduces the dimension of the control and, hence, the dimension of the optimization
problem and at the same time leads to an optimal state close to the desired state. A
different and more general approach for the dimension reduction of the control variable
might be to use the POD basis of the state variable. For the dimension reduction of the
state variable we have used an approximation of the form,

y(t) ≈ Φ`ỹ(t),

where Φ` = [ϕ1, ..., ϕ`] consists columnwise of the POD basis and, thus, the state variable
can be expressed as y(t) ≈ ∑`

i=1 ϕi ỹi(t). In a future work, one might consider a similar
approach also for the control variable,

u(t) ≈ Φ`ũ(t) =
∑̀
i=1

ϕi ũi(t), (5.1)

5.2. OUTLOOK ON FUTURE RESEARCH QUESTIONS 55

where ũ(t) = [ũ1, ..., ũ`]T is the reduced control. Note that we suggest to use the same
basis {ϕi}`i=1 for the low-dimension expression of the control variable. In Section 2 we
have argued that the POD basis captures well the dynamical behavior of the state variable.
Therefore, the quality of the approximation (5.1) might be of interest in future research.

Optimal control of Burgers’ equation in 2D/3D

In order to obtain a larger factor for the computational speedup of DEIM, the work of
[11, 45] has shown that a problem defined for the physical domain Ω ⊂ Rd , for d = 2, 3,
shows in general more potential for model order reduction. In [11], the authors present the
application of DEIM to the numerical simulation of a two-dimensional model for miscible
fingering in porous media. Therein, it is presented that the POD-DEIM reduced model
leads to a reduction of the computational time by a factor of O(1000). Since it has already
been shown in [19, 42] that the optimal control for 2 or 3-dimensional models is possible,
a further improvement of this work would be to extend the optimal control of Burgers’
equation to higher dimensions and evaluate the computational gain of POD-DEIM. It is
expected that this leads to a larger speedup for the reduced model.

Educated choice of the reduction dimensions ` and m

During the numerical tests in Chapter 4, we have seen that it is in general not trivial
to choose suitable values for the reduced dimensions ` and m. Especially when the SPG
method has been used for the solution of the optimal control problem, we have seen in
Section 4.4 that it might happen that more function and gradient evaluations for the
POD-DEIM reduced model are necessary which has a bad influence on the computational
speedup even though a single optimization iteration is much faster. For the test calcu-
lations presented in Table 4.3, we have not been able to choose the DEIM dimension in
such a way that this behavior does not appear. It is therefore desirable to evaluate the
choice of ` and m in more detail and derive an a priori estimate for both dimensions such
that the convergence behavior of the SPG method is optimal.

Development of a reduced model for optimal flow control

Burgers’ equation is an important model equation in the field of computational fluid dy-
namics (CFD) because the structure of the nonlinear term is similar to the nonlinearity in
the Navier-Stokes equations. Since this thesis has proven that POD-DEIM leads to a good
approximation of the dynamical behavior of Burgers’ equation, one might conclude that
the same mathematical methods can be applied in order to derive a reduced model of the
Navier-Stokes equations. In [24, 42], the Navier-Stokes equations have been considered
for the optimal control of two-dimensional flow. The implementation of MOR techniques
to the software used in [24, 42] might be a major step in order to reduce the huge com-
putational work that is required in CFD applications. The theoretical considerations for

56 CHAPTER 5. SUMMARY AND FUTURE RESEARCH

Burgers’ equation presented in this thesis might be very helpful in order to derive a POD-
DEIM reduced model for the Navier-Stokes equations due to the similar nonlinear terms
of both models.

Bibliography

[1] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems (Advances in De-
sign and Control). Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2005.

[2] J. Atwell. Proper Orthogonal Decomposition for Reduced Order Control of Partial Dif-
ferential Equations. PhD thesis, Virginia Polytechnic Institute and State University,
2000.

[3] Z. Bai and D. Skoogh. Krylov Subspace Techniques for Reduced-Order Modeling of
Nonlinear Dynamical Systems. Appl. Numer. Math, 43:9–44, 2002.

[4] G. Bärwolff. Numerik für Ingenieure, Physiker und Informatiker: für Bachelor und
Diplom. Für Bachelor und Diplom. Spektrum Akademischer Verlag, 2006.

[5] M. Baumann. Model order reduction for nonlinear dynamical systems. Literature
Study at TU Delft, 2013.

[6] A. D. Belegundu and T. R. Chandrupatla. Optimization Concepts and applications
in Engineering. Prentice Hall, 2003.

[7] E. G. Birgin, J. M. Martinez, and M. Raydan. Nonmonotone spectral projected
gradient methods on convex sets. SIAM J. Optim., 10:1196–1211, 2000.

[8] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Spectral projected gradient methods:
Review and perspectives. Journal of Statistical Software, 2012.

[9] A.E. Bryson and Y.C. Ho. Applied Optimal Control: Optimization, Estimation, and
Control. Halsted Press book’. Hemisphere Publishing Company, 1975.

[10] S. Chaturantabut. Nonlinear Model Reduction via Discrete Empirical Interpolation.
PhD thesis, Rice University, 2011.

[11] S. Chaturantabut and D. Sorensen. Application of POD and DEIM on dimension
reduction of non-linear miscible viscous fingering in porous media. Mathematical and
Computer Modelling of Dynamical Systems, 17:337–353, 2010.

57

58 BIBLIOGRAPHY

[12] S. Chaturantabut and D. Sorensen. Nonlinear Model Reduction via Discrete Empir-
ical Interpolation. SIAM J. Sci. Comput., 32:2737–2764, 2010.

[13] Y. Chen and J. White. A Qaudratic Method for Nonlinear Model Order
Reduction. URL: http://www.physics.purdue.edu/quantum/files/chen_mor_

icmsm2000.pdf.

[14] A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Mechanics.
Springer New York/Berlin/Heidelberg/Tokyo, 1979.

[15] A.J. Chorin and J.E. Marsden. A Mathematical Introduction to Fluid Mechanics.
Texts in Applied Mathematics Series. Springer London, Limited, 2012.

[16] J.E. Dennis and R.B. Schnabel. Numerical Methods for Nonlinear Equations and
Unconstrained Optimization. SIAM, Philadelphia, 1996.

[17] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential Equa-
tions. Studentlitteratur, 2008.

[18] P.M. Fitzsimons and C. Rui. Determining low dimensional models of distributed
systems. Advances in Robust and Nonlinear Control Systems, 53, 1993.

[19] J. Ghiglieri and S. Ulbrich. Optimal Flow Control Based on POD and MPC and an
Application to the Cancellation of Tollmien-Schlichting Waves. Optimization Methods
and Software, 00(00):1–34, January 2012.

[20] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, 1996.

[21] J. Haslinger and R. Mäkinen. Introduction to Shape Optimization: Theory, Approxi-
mation and Computation. Society for Industrial and Applied Mathematic, 2003.

[22] S.B. Hazra. Large-scale PDE-constrained Optimization in Applications. Lecture Notes
in Applied and Computational Mechanics, 49. Springer Berlin Heidelberg, 2010.

[23] M. Heinkenschloss. Numerical solution of implicitly constrained optimization prob-
lems. Technical report, Department of Computational and Applied Mathematics,
Rice University, 2008.

[24] L. Henning, D. Kuzmin, V. Mehrmann, M. Schmidt, A. Sokolov, and S. Turek. Flow
Control on the Basis of a Featflow-Matlab Coupling. Notes on Numerical Fluid
Mechanics and Multidisciplinary Design, 95:325–338, 2007.

[25] Y. Jaluria and K.K.E. Torrance. Computational heat transfer. Series in Computa-
tional and Physical Processes in Mechanics and Thermal Sciences Series. Taylor &
Francis Group, 2003.

http://www.physics.purdue.edu/quantum/files/chen_mor_icmsm2000.pdf
http://www.physics.purdue.edu/quantum/files/chen_mor_icmsm2000.pdf

BIBLIOGRAPHY 59

[26] I.T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer,
2002.

[27] C.T. Kelley. Iterative Methods for Optimization. SIAM, Philadelphia, 1999.

[28] G. Kerschen, J.-C. Golinval, A. Vakakis, and L. Bergman. The Method of Proper
Orthogonal Decomposition for Dynamical Characterization and Order Reduction of
Mechanical Systems: An Overview. Nonlinear Dynamics, 41:147–169, 2005.

[29] K. Kunisch and S. Volkwein. Control of the Burgers Equation by a Reduced-Order
Approach Using Proper Orthogonal Decomposition. Journal of Optimization Theory
and Applications, 102:345–371, 1999.

[30] S. Lall, J.E. Marsden, and S. Glavaški. A subspace approach to balanced truncation
for model order reduction of nonlinear control systems. International Journal of
Robust and Nonlinear Control, 12:519–535, 2002.

[31] G. Leugering, S. Engell, and A. Griewank. Constrained optimization and optimal con-
trol for partial differential equations. International series of numerical mathematics.
Springer Basel, 2012.

[32] J.L. Lions. Optimal control of systems governed by partial differential equations.
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1971.

[33] V. Mehrmann. Kontrolltheorie. Lecture Notes, Technical University of Berlin, 2004.

[34] B. Mohammadi and O. Pironneau. Applied Shape Optimization for Fluids. Oxford
University Press, 2001.

[35] H. B. Nielsen. IMMOPTIBOX. A Matlab toolbox for optimization and data fitting.
Informatics and Mathematical Modelling, Technical University of Denmark, DTU,
2005. http://www.imm.dtu.dk/˜hbn/immoptibox.

[36] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Verlag, Berlin, Hei-
delberg, New York, second edition, 2006.

[37] A.F. Peterson, S.L. Ray, and R. Mittra. Computational Methods for Electromagnetics.
IEEE Press Series on Electromagnetic Wave Theory. Wiley, 1998.

[38] J.W. Polderman and J.C. Willems. Introduction to Mathematical Systems Theory: A
Behavioral Approach. Texts in Applied Mathematics Series. Springer-Verlag, 1998.

[39] S. S. Rao. Engineering Optimization: Theory and Practice. Wiley, fourth edition,
2009.

[40] T. Reis. Model order reduction. Lecture notes, University Hamburg, 2012.

http://www.imm.dtu.dk/~hbn/immoptibox

60 BIBLIOGRAPHY

[41] J. C. De Los Reyes and K. Kunisch. A comparison of algorithms for control con-
strained optimal control of the Burgers equation. CALCOLO, 41:203–225, 2004.

[42] J. C. De Los Reyes and F. Tröltzsch. Optimal control of the stationary Navier-
Stokes equations with mixed control-state constraints. SIAM Journal on Control and
Optimization, 46:604–629, 2007.

[43] P. Sarma, W.H. Chen, L.J. Durlofsky, and K. Aziz. Production Optimization with
Adjoint Models under Nonlinear Control-State Path Inequality Constraints. SPE
Reservoir Evaluation & Engineering, 11(2):326–339, April 2008.

[44] W. H. A. Schilders, H.A. van der Vorst, and J. Rommes. Model Order Reduction.
Springer, 2008.

[45] R. Stefanescu and I. M. Navon. POD/DEIM nonlinear model order reduction of
an ADI implicit shallow water equations model. Journal of Computational Physics,
237:95–114, 2013.

[46] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.

[47] A. Taflove and S.C. Hagness. Computational Electrodynamics: The Finite- Difference
Time- Domain Method. The Artech House antenna and propagation library. Artech
House, Incorporated, 2005.

[48] L.N. Trefethen and III David Bau. Numerical Linear Algebra. Miscellaneous Bks.
Society for Industrial and Applied Mathematics, 1997.

[49] H.L. Trentelman, A.A. Stoorvogel, and M. Hautus. Control theory for linear systems.
Springer London, 2001.

[50] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods,
and Applications. Graduate Studies in Mathematics. American Mathematical Society,
2010.

[51] T. van den Boom and B. De Schutter. Optimization in Systems and Control. Lecture
Notes for the Course SC4091, TU Delft, 2012.

[52] S. Volkwein. Proper orthogonal decomposition: Applications in optimiza-
tion and control. Lecture notes, University of Konstanz, 2008. URL :
http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Lecture-Notes-Volkwein.pdf.

[53] S. Volkwein. Model reduction using proper orthogonal decomposition. Lecture notes,
University of Konstanz, 2011. URL: http://www.math.uni-konstanz.de/numerik/

personen/volkwein/teaching/POD-Vorlesung.pdf.

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/Lecture-Notes-Volkwein.pdf
http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/Lecture-Notes-Volkwein.pdf
http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf
http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf

BIBLIOGRAPHY 61

[54] P. Wesseling. Principles of Computational Fluid Dynamics. Springer Berlin/Heidel-
berg/New York, 2001.

Appendices

63

Appendix A

Numerical solution of Burgers’ equation

A.1 Spacial discretization via the finite element method

We consider Burgers’ equation (A.1) together with homogeneous Dirichlet boundary con-
ditions (A.2) and initial value (A.3) given by the function y0(x),

yt +
(1

2y2 − νyx

)
x

= f , (A.1)

y(t, 0) = y(t,L) = 0, (A.2)

y(0, x) = y0(x). (A.3)

When we define the spatial grid as {0 = x0, ..., xN+1 = L} with constant step size h, the
following FEM ansatz,

y(t, x) ≈
N∑

i=1
yi(t)φi(x), (A.4)

implicitly fulfills the boundary conditions (A.2). As test functions, the following hat
functions as proposed, for instance, in [17] have been used:

φi(x) =


x−xi−1

h , for x ∈ [xi−1, xi],
xi+1−x

h , for x ∈ [xi , xi+1],

0, otherwise.

In order to derive the weak form of (A.1), let us first assume that a source function f 6= 0
is given. In the FEM-Galerkin method we then multiply (A.1) by the test function φj and
integrate over the spatial domain [0,L]:
∫ L

0
yt(t, x)φj(x)dx = −1

2

∫ L

0

(
y2(t, x)

)
x
φj(x)dx + ν

∫ L

0
(y(t, x))xx φj(x)dx +

∫ L

0
f (x)φj(x)dx

= −1
2

∫ L

0

(
y2(t, x)

)
x
φj(x)dx − ν

∫ L

0
yx(t, x) (φj(x))x dx +

∫ L

0
f (x)φj(x)dx,

65

66 APPENDIX A. NUMERICAL SOLUTION OF BURGERS’ EQUATION

using integration by parts and the homogeneous Dirichlet boundary conditions. We now
plug in the approximation (A.4) and assume further y2(t, x) ≈∑N

i=1 y2
i (t)φi(x):∫ L

0

N∑
i=1

ẏi(t)φi(x) φj(x)dx = −1
2

∫ L

0

N∑
i=1

y2
i (t)(φi(x))x φj(x)dx

− ν
∫ L

0

N∑
i=1

yi(t)(φi(x))x (φj(x))xdx +
∫ L

0
f (x)φj(x)dx,

which is equivalent to
N∑

i=1
ẏi(t)

∫ L

0
φi(x)φj(x)dx︸ ︷︷ ︸

=:Mi,j

= −1
2

N∑
i=1

y2
i (t)

∫ L

0
(φi(x))x φj(x)dx︸ ︷︷ ︸

=:Bi,j

−

ν
N∑

i=1
yi(t)

∫ L

0
(φi(x))x (φj(x))xdx︸ ︷︷ ︸

=:Ci,j

+
∫ L

0
f (x)φj(x)dx.

It is important to note that the matrices M ,B,C are constant in time and their entries
consist of polynomials which due to the fact that they are defined as hat function mostly
cancel out. The matrices can be pre-computed and are tridiagonal:

M = h
6


4 1
1 4 1

.
1 4 1

1 4

 ,B =


0 1

2

− 1
2 0 1

2
.

− 1
2 0 1

2

− 1
2 0

 ,C = 1
h


2 −1

−1 2 −1
.

−1 2 −1
−1 2

 .

For the source term, we assumed a function f (x) that does not depend on time and,
thus, this vector can be pre-computed as well. Taking into account that the linear ansatz
function are only non-zero at two cells, the Trapezoidal rule [4] yields:∫ L

0
f (x)φj(x)dx =

∫ xj

xj−1
f (x)φj(x)dx +

∫ xj+1

xj
f (x)φj(x)dx ≈ h

2 f (xj) + h
2 f (xj) = hf (xj).

In order to formulate the discretization in vector notation, we define y(t) := [y1(t), ..., yN (t)]T

and obtain the following system of ODEs:

M ẏ(t) = −1
2By2(t)− νCy(t) + f , (A.5)

where the source vector is given by

f =


∫ L

0 f (x)φ1(x)dx
...∫ L

0 f (x)φN (x)dx

 ≈ h


f (x1)

...
f (xN)

 .
Suitable initial conditions when y0(x) is equal to a step function can be derived straight

forward since the test functions are equal to 1 at the grid points:

y0(x) =

1, if 0 ≤ x ≤ L
2

0, if L
2 < x ≤ L

⇒ yi(0) =

1, if xi ∈ [0, L
2]

0, if xi ∈ (L
2 ,L]

.

A.2. TIME INTEGRATION WITH THE IMPLICIT EULER METHOD 67

A.2 Time integration with the implicit Euler method

Since the ODE (A.5) is nonlinear, the application of the implicit Euler methods requires
to solve for the root of a nonlinear equation using Newton’s method at each time step.

The implicit Euler method applied to (A.5) reads

M y(n+1) − y(n)

τ
= −1

2B(y(n+1))2 − νCy(n+1) + f , n = 1, ...,Nt ,

where y(n) = y(tn), τ is the time step, and Nt is the total number of time steps.
A re-formulation leads to

F(y(n+1)) ≡ 1
τ

My(n+1) − 1
τ

My(n) + 1
2B(y(n+1))2 + νCy(n+1) − f = 0,

where Newton’s method can be applied such that the root of the nonlinear function F
is equal to the solution at the next time step y(n+1) (see Algorithm A.1). In order to
solve the linear system at line 6, we also need to derive the Jacobian of F which can be
computed analytically by

JF (y(n+1)) = 1
τ

M + B. ∗ y(n+1) + νC ,

where B. ∗ y(n) means that every row of the matrix B is multiplied pointwise with the
vector y(n) such that the overall product is again a matrix of the appropriate dimension.
The stopping criterium can be specified via a tolerance εEul for the relative error of the
Newton iteration (see line 7).

Algorithm A.1 Euler implicit with Newton’s method
1: Initialize y(1) = y0, εNewton ∈ R+, max newton ∈ N
2: for n = 1 to Nt do
3: ytmp,1 = y(n) % Educated guess
4: Set err = 1, iter = 0
5: while err > εNewton and iter < max newton do
6: Solve ytmp,2 = ytmp,1 − J−1

F F(ytmp,1)
7: err = ‖ytmp,2 − ytmp,1‖2/‖ytmp,2‖2
8: Update iterate, utmp,1 = utmp,2

9: iter = iter + 1
10: end while
11: y(n+1) = ytmp,2 % Assign update after convergence
12: end for

Appendix B

Implementation issues

B.1 The truncated conjugant gradient (CG) method

In order to obtain a new search direction in the k-th iteration of the Newton-based method
discussed in Section 3.1, we need to solve the Newton equation,

∇2Ĵ (uk)sk = −∇Ĵ (uk), (B.1)

for the search direction sk . Note that (B.1) is a linear system of equations and the Hessian
∇2Ĵ (uk) is by definition a symmetric matrix. For simplicity, let us denote A := ∇2Ĵ (uk),
x := sk and b := −∇Ĵ (uk) such that (B.1) is equal to Ax = b. In order to motivate
the usage of the CG algorithm to solve (B.1), we use the theorem [48, Theorem 38.2]
that states that in the i-th iteration of CG, the error e(i) = x∗ − x(i) is minimized in the
A-norm, i.e.

x(i) = argmin
x∈Ki

‖e(i)‖A = argmin
x∈Ki

‖x∗ − x‖A,

where x(i) is the i-th iterate of the CG algorithm and x∗ is the (unknown) exact solution
of linear system, i.e. Ax∗ = b. Furthermore, the CG method minimizes in step i over the
so-called Krylov space of dimension i,

Ki := span {b,Ab, ...,Ai−1b}.

The following short calculation shows that minimizing the error e(i) in the A-norm is
equivalent to minimizing the second-order Taylor expansion of the cost function Ĵ ,

‖e(i)‖2A = (e(i))T Ae(i) = (x∗ − x(i))T A(x∗ − x(i))

= (x(i))T Ax(i) − 2(x(i))T Ax∗ + (x∗)T Ax∗

= (x(i))T Ax(i) − 2(x(i))T b + (x∗)T b =: 2TĴ (x(i)) + (x∗)T b,

where (x∗)T b is a constant term and after back-substitution of A, x, b we see that TĴ (x) =
1
2xT Ax − xT b is except for a constant term equal to the second-order Taylor expansion of

69

70 APPENDIX B. IMPLEMENTATION ISSUES

the objective function Ĵ . Therefore, the CG algorithm can be interpreted as an iterative
process for minimizing the quadratic approximation of the cost function which motivates
its usage in optimization, cf. [48]. This is also the reason why the update formula in line
19 of Algorithm B.1 reminds of a line search algorithm. In fact, it is derived in [48] that
TĴ is minimized in step i over the Krylov space Ki .

Furthermore, the version of the CG algorithm we present in Algorithm B.1 is truncated
when the following condition is fulfilled,

‖∇2Ĵ (uk)sk +∇Ĵ (uk)‖2 ≤ ηk‖∇Ĵ (uk)‖2, (B.2)

where ηk ∈ (0, 1) and the left-hand side is the residual of the Newton equation (B.1). For
the numerical test in Section 3.3.1 and 4.2, we use ηk = 0.01 or, as suggested in [23],
ηk = min{0.01, ‖∇Ĵ (uk)‖2}.

Note that in Algorithm B.1, we choose the method of steepest descent in the case that
the Hessian is not positive definite (line 12).

Algorithm B.1 The truncated CG algorithm for solving the Newton equation
∇2Ĵ (uk)sk = −∇Ĵ (uk), [23]

1: INPUT: Function handle that evaluates the matrix-vector product ∇2Ĵ (uk) · v, right-hand
side −∇Ĵ (uk), max cg∈ N, truncation tolerance ηk ∈ (0, 1)

2: OUTPUT: Solution of Newton’s equation sk

3: Set sk = 0, p(0)
k = r (0)

k = −∇Ĵ (uk)
4: for i = 0, 1, 2, ...,max cg do
5: if ‖r (i)

k ‖2 < ηk‖r (0)
k ‖2 then

6: if i = 0 then
7: sk = −∇Ĵ (uk) % Steepest descent direction
8: return
9: end if

10: end if
11: Compute q(i)

k = ∇2Ĵ (uk) · p(i)
k

12: if (p(i)
k)T q(i)

k < 0 then
13: if i = 0 then
14: sk = −∇Ĵ (uk) % Steepest descent direction
15: return
16: end if
17: end if
18: Compute γ(i)

k = ‖r (i)
k ‖22/(p(i)

k)T q(i)
k

19: Update solution, sk = sk + γ
(i)
k q(i)

k

20: Compute r (i+1)
k = r (i)

k − γ
(i)
k q(i)

k

21: Compute β(i)
k = ‖r (i+1)

k ‖22/‖r
(i)
k ‖22

22: Compute p(i+1)
k = r (i+1)

k + β
(i)
k p(i)

k

23: end for

B.2. ARMIJO LINE SEARCH 71

B.2 Armijo line search

Suppose the search direction s is known (we omit the index k since the situation is the
same at each iteration) we need to minimize the objective function J (y(u), u) along the
descent direction s. This means we are looking for an optimal step length α∗ in the
direction of s, i.e.

α∗ = argmin
α∈R+

J (y(u + α · s), u + α · s). (B.3)

An update of u can then be computed according to formula (3.7). Since J (y(·), ·) is a
multi-dimensional function, we will only find a local minimum along the direction of s.
The Armijo algorithm B.2 belongs to the family of line search algorithms that iteratively
solve the optimization problem (B.3) along the search direction s. An overview of other
line search algorithms can for instance be found in [39, 51].

Algorithm B.2 Armijo line search algorithm, [39]
1: INPUT: initial point u0, search direction s, tolerance εα ∈ R+, safeguard αmin ∈ (0, 1)
2: OUTPUT: optimal step size α∗ in direction s
3: Solve c(y0, u0) for y0

4: Compute J0 = J (y0, u0)
5: Set α = 1 and set u = u0 + α · s
6: Solve c(y, u) for y
7: while J (y, u) > J0 + εα · α · sT∇uJ (y0, u0) and α > αmin do
8: Set α := α/2
9: Set u = u0 + α · s

10: Solve c(y, u) for y
11: Compute J (y, u)
12: end while
13: We have found α∗ = α

The stopping condition in line 7 does not require a re-calculation of the gradient of the
objective function since, in practice, we used the respective value of the previous iterate
as initial tuple (u0, y0) for which the gradient has already been computed. The tolerance
that has been used is εα = 10−4. In line 8, the step size is devided by 2 and the control
is updated. It is important to note that once the control is updated in line 9, we need
to solve the constraining PDE c in order to obtain the state y(u). Afterwards, the cost
function J (y, u) can be evaluated again. Therefore, it is crucial to note that it is necessary
to solve c(y, u) in line 3 and line 10. In case of optimal control of the reduced model, this
has been replaced by the solution of c̃(ỹ, u) which leads to a computational gain within
the Armijo line search algorithm.

72 APPENDIX B. IMPLEMENTATION ISSUES

B.3 Matlab code

The numerical test calculations for the POD-DEIM model of Burgers’ equation pre-
sented in Section 2.3 as well as the optimal control algorithm discussed in Section 3.3
and Chapter 4 have been implemented in Matlab. The code is freely accessible via

https://github.com/ManuelMBaumann/MasterThesis

and can be used for further improvement or demonstration at any time.

https://github.com/ManuelMBaumann/MasterThesis

Appendix C

Notation

Whenever I read a scientific publication I keep asking myself What is f ? Therefore, the
following list gives an overview of the names of variables that are used in this Master thesis.

y State variable
u Control variable
λ Adjoint variable
ν Viscosity parameter in Burgers’ equation

[0,T] Time domain
[0,L] Spatial domain

Ω The cross product Ω = [0,L]× [0,T]
N Size of the spatial discretization of the full model
` POD-dimension
m DEIM-dimension
Nt Time discretization size
P DEIM projection matrix
L Lagrangian function
J Objective function
Ĵ The same objective function depending on the control only
ω Control penalty, we choose ω ∈ (0, 1)

M ,B,C Constant matrices derived from the spatial discretization of Burgers’ equation
IN Identity matrix of dimension N ×N
SP The speedup is defined as the ratio of computation times
εJ Tolerance for change in objective function
ε∇ Tolerance for zero-gradient condition
εα Tolerance of the Armijo line-search

εNewton Tolerance of the Newton-iteration for implicit Euler
ηk Truncation tolerance for CG-algorithm

73

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Introduction
	Motivation
	Previous work
	Research goals
	Chapter outline

	Model order reduction for nonlinear dynamical systems
	The Proper Orthogonal Decomposition (POD)
	Optimality of the POD basis
	The projected reduced-order model

	The Discrete Empirical Interpolation Method (DEIM)
	Application: POD-DEIM for the unsteady Burgers' equation
	Approximation error
	Use of POD-DEIM for parameter studies
	Computational speedup for POD and POD-DEIM

	Optimal control of partial differential equations
	Newton-type methods using adjoint techniques for derivative computation
	Using adjoint equations for gradient computation
	Using adjoint equations for Hessian computation

	Gradient-based optimization techniques
	The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
	The spectral projected gradient (SPG) method

	Application: Optimal control of Burgers' equation
	Numerical results for a Newton-type method using adjoints
	Numerical results for gradient-based optimization methods

	Implementation and analysis of a POD-DEIM reduced model for the optimal control of Burgers' equation
	A POD-DEIM reduced model for optimal control of Burgers' equation
	A Newton-type method for the POD-DEIM reduced model
	Low-dimensional control using individual control points
	Performance and error analysis

	Summary and Future research
	Overview and main results
	Outlook on future research questions

	Bibliography
	Numerical solution of Burgers' equation
	Spacial discretization via the finite element method
	Time integration with the implicit Euler method

	Implementation issues
	The truncated conjugant gradient (CG) method
	Armijo line search
	Matlab code

	Notation

